Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054171947> ?p ?o ?g. }
- W2054171947 endingPage "567" @default.
- W2054171947 startingPage "536" @default.
- W2054171947 abstract "Stochastic reaction–diffusion models are now a popular tool for studying physical systems in which both the explicit diffusion of molecules and noise in the chemical reaction process play important roles. The Smoluchowski diffusion-limited reaction model (SDLR) is one of several that have been used to study biological systems. Exact realizations of the underlying stochastic processes described by the SDLR model can be generated by the recently proposed First-Passage Kinetic Monte Carlo (FPKMC) method. This exactness relies on sampling analytical solutions to one and two-body diffusion equations in simplified protective domains. In this work we extend the FPKMC to allow for drift arising from fixed, background potentials. As the corresponding Fokker–Planck equations that describe the motion of each molecule can no longer be solved analytically, we develop a hybrid method that discretizes the protective domains. The discretization is chosen so that the drift–diffusion of each molecule within its protective domain is approximated by a continuous-time random walk on a lattice. New lattices are defined dynamically as the protective domains are updated, hence we will refer to our method as Dynamic Lattice FPKMC or DL-FPKMC. We focus primarily on the one-dimensional case in this manuscript, and demonstrate the numerical convergence and accuracy of our method in this case for both smooth and discontinuous potentials. We also present applications of our method, which illustrate the impact of drift on reaction kinetics." @default.
- W2054171947 created "2016-06-24" @default.
- W2054171947 creator A5018833756 @default.
- W2054171947 creator A5028304834 @default.
- W2054171947 creator A5044930696 @default.
- W2054171947 creator A5066624786 @default.
- W2054171947 creator A5075023205 @default.
- W2054171947 date "2014-02-01" @default.
- W2054171947 modified "2023-10-16" @default.
- W2054171947 title "A First-Passage Kinetic Monte Carlo method for reaction–drift–diffusion processes" @default.
- W2054171947 cites W1482678044 @default.
- W2054171947 cites W1603900493 @default.
- W2054171947 cites W1964811412 @default.
- W2054171947 cites W1965555277 @default.
- W2054171947 cites W1967668980 @default.
- W2054171947 cites W1968877074 @default.
- W2054171947 cites W1973360544 @default.
- W2054171947 cites W1975543975 @default.
- W2054171947 cites W1978329448 @default.
- W2054171947 cites W1978408051 @default.
- W2054171947 cites W1981132987 @default.
- W2054171947 cites W1981333260 @default.
- W2054171947 cites W1982903250 @default.
- W2054171947 cites W1984618686 @default.
- W2054171947 cites W1986789040 @default.
- W2054171947 cites W1988410238 @default.
- W2054171947 cites W2006533898 @default.
- W2054171947 cites W2008057778 @default.
- W2054171947 cites W2009331672 @default.
- W2054171947 cites W2010310052 @default.
- W2054171947 cites W2014693361 @default.
- W2054171947 cites W2016503463 @default.
- W2054171947 cites W2019720802 @default.
- W2054171947 cites W2022178479 @default.
- W2054171947 cites W2031220210 @default.
- W2054171947 cites W2038867895 @default.
- W2054171947 cites W2043488671 @default.
- W2054171947 cites W2054320306 @default.
- W2054171947 cites W2072467858 @default.
- W2054171947 cites W2072969946 @default.
- W2054171947 cites W2074142433 @default.
- W2054171947 cites W2074370593 @default.
- W2054171947 cites W2074413263 @default.
- W2054171947 cites W2075166799 @default.
- W2054171947 cites W2077046573 @default.
- W2054171947 cites W2077709566 @default.
- W2054171947 cites W2078119846 @default.
- W2054171947 cites W2078807740 @default.
- W2054171947 cites W2083186895 @default.
- W2054171947 cites W2084131634 @default.
- W2054171947 cites W2093617915 @default.
- W2054171947 cites W2095921114 @default.
- W2054171947 cites W2102267113 @default.
- W2054171947 cites W2110804923 @default.
- W2054171947 cites W2112185150 @default.
- W2054171947 cites W2113613128 @default.
- W2054171947 cites W2124735489 @default.
- W2054171947 cites W2133812685 @default.
- W2054171947 cites W2134859821 @default.
- W2054171947 cites W2141688036 @default.
- W2054171947 cites W2143920302 @default.
- W2054171947 cites W2145835019 @default.
- W2054171947 cites W2150800446 @default.
- W2054171947 cites W2155021187 @default.
- W2054171947 cites W2155418451 @default.
- W2054171947 cites W2155601887 @default.
- W2054171947 cites W2165962849 @default.
- W2054171947 cites W2169509065 @default.
- W2054171947 cites W2171280873 @default.
- W2054171947 cites W2171327609 @default.
- W2054171947 cites W3103754732 @default.
- W2054171947 cites W3104481665 @default.
- W2054171947 doi "https://doi.org/10.1016/j.jcp.2013.12.023" @default.
- W2054171947 hasPublicationYear "2014" @default.
- W2054171947 type Work @default.
- W2054171947 sameAs 2054171947 @default.
- W2054171947 citedByCount "17" @default.
- W2054171947 countsByYear W20541719472013 @default.
- W2054171947 countsByYear W20541719472014 @default.
- W2054171947 countsByYear W20541719472015 @default.
- W2054171947 countsByYear W20541719472016 @default.
- W2054171947 countsByYear W20541719472017 @default.
- W2054171947 countsByYear W20541719472018 @default.
- W2054171947 countsByYear W20541719472019 @default.
- W2054171947 countsByYear W20541719472020 @default.
- W2054171947 countsByYear W20541719472022 @default.
- W2054171947 crossrefType "journal-article" @default.
- W2054171947 hasAuthorship W2054171947A5018833756 @default.
- W2054171947 hasAuthorship W2054171947A5028304834 @default.
- W2054171947 hasAuthorship W2054171947A5044930696 @default.
- W2054171947 hasAuthorship W2054171947A5066624786 @default.
- W2054171947 hasAuthorship W2054171947A5075023205 @default.
- W2054171947 hasBestOaLocation W20541719472 @default.
- W2054171947 hasConcept C105795698 @default.
- W2054171947 hasConcept C121194460 @default.
- W2054171947 hasConcept C121231716 @default.
- W2054171947 hasConcept C121332964 @default.
- W2054171947 hasConcept C121864883 @default.