Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054226364> ?p ?o ?g. }
- W2054226364 abstract "Optimal Bayesian experimental designs for estimation and prediction in linear models are discussed. The designs are optimal for estimating a linear combination of the regression parameters $mathbf{c}^Ttheta$ or prediction at a point where the expected response is $mathbf{c}^Tmathbf{theta}$ under squared error loss. A distribution on $mathbf{c}$ is introduced to represent the interest in particular linear combinations of the parameters. In the usual notation for linear models minimizing the preposterior expected loss leads to minimizing the quantity $mathrm{tr}psi(R + XX^T)^{-1}$. The matrix $psi$ is defined to be $E(mathbf{cc}^T)$ and the matrix $R$ is the prior precision matrix of $theta$. A geometric interpretation of the optimal designs is given which leads to a parallel of Elfving's theorem for $mathbf{c}$-optimality. A bound is given for the minimum number of points at which it is necessary to take observations. Some examples of optimal Bayesian designs are given and optimal designs for prediction in polynomial regression are derived. The optimality of rounding non-integer designs to integer designs is discussed." @default.
- W2054226364 created "2016-06-24" @default.
- W2054226364 creator A5088768921 @default.
- W2054226364 date "1984-03-01" @default.
- W2054226364 modified "2023-10-14" @default.
- W2054226364 title "Optimal Bayesian Experimental Design for Linear Models" @default.
- W2054226364 cites W125129620 @default.
- W2054226364 cites W1479994515 @default.
- W2054226364 cites W1968753560 @default.
- W2054226364 cites W1968867201 @default.
- W2054226364 cites W1969663208 @default.
- W2054226364 cites W1970217944 @default.
- W2054226364 cites W1970453064 @default.
- W2054226364 cites W1984867253 @default.
- W2054226364 cites W1996050434 @default.
- W2054226364 cites W2002844873 @default.
- W2054226364 cites W2004499537 @default.
- W2054226364 cites W2008727735 @default.
- W2054226364 cites W2009948365 @default.
- W2054226364 cites W2012327199 @default.
- W2054226364 cites W2017351261 @default.
- W2054226364 cites W2018025307 @default.
- W2054226364 cites W2018639632 @default.
- W2054226364 cites W2038120787 @default.
- W2054226364 cites W2043940885 @default.
- W2054226364 cites W2045289894 @default.
- W2054226364 cites W2053344852 @default.
- W2054226364 cites W2057872514 @default.
- W2054226364 cites W2060289560 @default.
- W2054226364 cites W2063269078 @default.
- W2054226364 cites W2064868327 @default.
- W2054226364 cites W2073425578 @default.
- W2054226364 cites W2082382318 @default.
- W2054226364 cites W2085499762 @default.
- W2054226364 cites W2094740164 @default.
- W2054226364 cites W2144578442 @default.
- W2054226364 cites W2479236352 @default.
- W2054226364 cites W2518089210 @default.
- W2054226364 cites W2796113827 @default.
- W2054226364 cites W2895270050 @default.
- W2054226364 cites W2904339734 @default.
- W2054226364 cites W312682720 @default.
- W2054226364 cites W2511070550 @default.
- W2054226364 doi "https://doi.org/10.1214/aos/1176346407" @default.
- W2054226364 hasPublicationYear "1984" @default.
- W2054226364 type Work @default.
- W2054226364 sameAs 2054226364 @default.
- W2054226364 citedByCount "122" @default.
- W2054226364 countsByYear W20542263642012 @default.
- W2054226364 countsByYear W20542263642013 @default.
- W2054226364 countsByYear W20542263642014 @default.
- W2054226364 countsByYear W20542263642015 @default.
- W2054226364 countsByYear W20542263642016 @default.
- W2054226364 countsByYear W20542263642017 @default.
- W2054226364 countsByYear W20542263642018 @default.
- W2054226364 countsByYear W20542263642019 @default.
- W2054226364 countsByYear W20542263642020 @default.
- W2054226364 countsByYear W20542263642021 @default.
- W2054226364 countsByYear W20542263642023 @default.
- W2054226364 crossrefType "journal-article" @default.
- W2054226364 hasAuthorship W2054226364A5088768921 @default.
- W2054226364 hasBestOaLocation W20542263641 @default.
- W2054226364 hasConcept C105795698 @default.
- W2054226364 hasConcept C106487976 @default.
- W2054226364 hasConcept C107673813 @default.
- W2054226364 hasConcept C111919701 @default.
- W2054226364 hasConcept C11413529 @default.
- W2054226364 hasConcept C114614502 @default.
- W2054226364 hasConcept C118615104 @default.
- W2054226364 hasConcept C126255220 @default.
- W2054226364 hasConcept C134306372 @default.
- W2054226364 hasConcept C136625980 @default.
- W2054226364 hasConcept C159985019 @default.
- W2054226364 hasConcept C186394612 @default.
- W2054226364 hasConcept C192562407 @default.
- W2054226364 hasConcept C199360897 @default.
- W2054226364 hasConcept C203233044 @default.
- W2054226364 hasConcept C28826006 @default.
- W2054226364 hasConcept C33923547 @default.
- W2054226364 hasConcept C41008148 @default.
- W2054226364 hasConcept C48921125 @default.
- W2054226364 hasConcept C90119067 @default.
- W2054226364 hasConcept C97137487 @default.
- W2054226364 hasConceptScore W2054226364C105795698 @default.
- W2054226364 hasConceptScore W2054226364C106487976 @default.
- W2054226364 hasConceptScore W2054226364C107673813 @default.
- W2054226364 hasConceptScore W2054226364C111919701 @default.
- W2054226364 hasConceptScore W2054226364C11413529 @default.
- W2054226364 hasConceptScore W2054226364C114614502 @default.
- W2054226364 hasConceptScore W2054226364C118615104 @default.
- W2054226364 hasConceptScore W2054226364C126255220 @default.
- W2054226364 hasConceptScore W2054226364C134306372 @default.
- W2054226364 hasConceptScore W2054226364C136625980 @default.
- W2054226364 hasConceptScore W2054226364C159985019 @default.
- W2054226364 hasConceptScore W2054226364C186394612 @default.
- W2054226364 hasConceptScore W2054226364C192562407 @default.
- W2054226364 hasConceptScore W2054226364C199360897 @default.
- W2054226364 hasConceptScore W2054226364C203233044 @default.
- W2054226364 hasConceptScore W2054226364C28826006 @default.
- W2054226364 hasConceptScore W2054226364C33923547 @default.