Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054332472> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2054332472 endingPage "388" @default.
- W2054332472 startingPage "371" @default.
- W2054332472 abstract "A major source of urban freeway delay in the U.S. is non-recurring congestion caused by incidents. The automated detection of incidents is an important function of a freeway traffic management center. A number of incident detection algorithms, using inductive loop data as input, have been developed over the past several decades, and a few of them are being deployed at urban freeway systems in major cities. These algorithms have shown varying degrees of success in their detection performance. In this paper, we present a new incident detection technique based on artificial neural networks (ANNs). Three types of neural network models, namely the multi-layer feedforward (MLF), the self-organizing feature map (SOFM) and adaptive resonance theory 2 (ART2), were developed to classify traffic surveillance data obtained from loop detectors, with the objective of using the classified output to detect lane-blocking freeway incidents. The models were developed with simulation data from a study site and tested with both simulation and field data at the same site. The MLF was found to have the highest potential, among the three ANNs, to achieve a better incident detection performance. The MLF was also tested with limited field data collected from three other freeway locations to explore its transferability. Our results and analyzes with data from the study site as well as the three test sites have shown that the MLF consistently detected most of the lane-blocking incidents and typically gave a false alarm rate lower than the California, McMaster and Minnesota algorithms currently in use." @default.
- W2054332472 created "2016-06-24" @default.
- W2054332472 creator A5058186108 @default.
- W2054332472 creator A5065884672 @default.
- W2054332472 date "1995-12-01" @default.
- W2054332472 modified "2023-10-11" @default.
- W2054332472 title "Automated detection of lane-blocking freeway incidents using artificial neural networks" @default.
- W2054332472 cites W134309601 @default.
- W2054332472 cites W1967011375 @default.
- W2054332472 cites W1976979231 @default.
- W2054332472 cites W2010039425 @default.
- W2054332472 cites W2027796594 @default.
- W2054332472 cites W2030070229 @default.
- W2054332472 cites W2087148973 @default.
- W2054332472 cites W2107806935 @default.
- W2054332472 cites W4250621041 @default.
- W2054332472 cites W65738273 @default.
- W2054332472 doi "https://doi.org/10.1016/0968-090x(95)00016-c" @default.
- W2054332472 hasPublicationYear "1995" @default.
- W2054332472 type Work @default.
- W2054332472 sameAs 2054332472 @default.
- W2054332472 citedByCount "133" @default.
- W2054332472 countsByYear W20543324722012 @default.
- W2054332472 countsByYear W20543324722013 @default.
- W2054332472 countsByYear W20543324722014 @default.
- W2054332472 countsByYear W20543324722015 @default.
- W2054332472 countsByYear W20543324722016 @default.
- W2054332472 countsByYear W20543324722017 @default.
- W2054332472 countsByYear W20543324722018 @default.
- W2054332472 countsByYear W20543324722019 @default.
- W2054332472 countsByYear W20543324722020 @default.
- W2054332472 countsByYear W20543324722021 @default.
- W2054332472 countsByYear W20543324722022 @default.
- W2054332472 countsByYear W20543324722023 @default.
- W2054332472 crossrefType "journal-article" @default.
- W2054332472 hasAuthorship W2054332472A5058186108 @default.
- W2054332472 hasAuthorship W2054332472A5065884672 @default.
- W2054332472 hasConcept C119857082 @default.
- W2054332472 hasConcept C124101348 @default.
- W2054332472 hasConcept C144745244 @default.
- W2054332472 hasConcept C153180895 @default.
- W2054332472 hasConcept C154945302 @default.
- W2054332472 hasConcept C2776836416 @default.
- W2054332472 hasConcept C31258907 @default.
- W2054332472 hasConcept C41008148 @default.
- W2054332472 hasConcept C50644808 @default.
- W2054332472 hasConcept C76155785 @default.
- W2054332472 hasConcept C77052588 @default.
- W2054332472 hasConcept C94915269 @default.
- W2054332472 hasConceptScore W2054332472C119857082 @default.
- W2054332472 hasConceptScore W2054332472C124101348 @default.
- W2054332472 hasConceptScore W2054332472C144745244 @default.
- W2054332472 hasConceptScore W2054332472C153180895 @default.
- W2054332472 hasConceptScore W2054332472C154945302 @default.
- W2054332472 hasConceptScore W2054332472C2776836416 @default.
- W2054332472 hasConceptScore W2054332472C31258907 @default.
- W2054332472 hasConceptScore W2054332472C41008148 @default.
- W2054332472 hasConceptScore W2054332472C50644808 @default.
- W2054332472 hasConceptScore W2054332472C76155785 @default.
- W2054332472 hasConceptScore W2054332472C77052588 @default.
- W2054332472 hasConceptScore W2054332472C94915269 @default.
- W2054332472 hasIssue "6" @default.
- W2054332472 hasLocation W20543324721 @default.
- W2054332472 hasOpenAccess W2054332472 @default.
- W2054332472 hasPrimaryLocation W20543324721 @default.
- W2054332472 hasRelatedWork W105776063 @default.
- W2054332472 hasRelatedWork W1566605096 @default.
- W2054332472 hasRelatedWork W2003125512 @default.
- W2054332472 hasRelatedWork W2047581363 @default.
- W2054332472 hasRelatedWork W2069319338 @default.
- W2054332472 hasRelatedWork W2277414331 @default.
- W2054332472 hasRelatedWork W2367384407 @default.
- W2054332472 hasRelatedWork W3214387023 @default.
- W2054332472 hasRelatedWork W4289830195 @default.
- W2054332472 hasRelatedWork W1629725936 @default.
- W2054332472 hasVolume "3" @default.
- W2054332472 isParatext "false" @default.
- W2054332472 isRetracted "false" @default.
- W2054332472 magId "2054332472" @default.
- W2054332472 workType "article" @default.