Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054368049> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2054368049 endingPage "437" @default.
- W2054368049 startingPage "417" @default.
- W2054368049 abstract "In [4] Bieri and Strebel defined a geometric invariant Σ for finitely generated modules over the group algebras of finitely generated abelian groups. They used this to define a criterion for when metabelian groups are finitely presented. This invariant was further developed by Bieri, Strebel and Groves and has many interesting applications. In [2] Bieri and Groves showed that when the group algebra is defined over a Dedekind domain the complement of Σ must be a closed rational spherical polyhedral cone. In [6,7] Brookes and Groves defined a similar invariant Δ for modules over the crossed product of a division ring by a free finitely generated abelian group. Such a crossed product is often known as the (coordinate ring of) the non-commutative torus since in the special case where it is commutative it is the coordinate ring of an algebraic torus. If in the commutative case we take the complement of Δ and identify points that differ by a positive scalar multiple we obtain Σ . Brookes and Groves were unable to prove that their invariant must be a rational polyhedral cone, although using the methods of [2] they do prove a weaker version of the result; they show that for any finitely generated module M , Δ(M) must contain a rational polyhedral cone Δ∗(M) of dimension equal to the Gelfand–Kirillov dimension of M and moreover that the complement Δ(M)Δ∗(M) must be contained inside a rational polyhedral cone of strictly smaller dimension." @default.
- W2054368049 created "2016-06-24" @default.
- W2054368049 creator A5019548603 @default.
- W2054368049 date "2006-03-01" @default.
- W2054368049 modified "2023-09-29" @default.
- W2054368049 title "Homogeneity and rigidity of the Brookes–Groves invariant for the non-commutative torus" @default.
- W2054368049 cites W1530431073 @default.
- W2054368049 cites W1542689491 @default.
- W2054368049 cites W164273335 @default.
- W2054368049 cites W1999336620 @default.
- W2054368049 cites W2006495750 @default.
- W2054368049 cites W2035606678 @default.
- W2054368049 cites W2061841128 @default.
- W2054368049 cites W2089599140 @default.
- W2054368049 cites W2089829547 @default.
- W2054368049 cites W2316703202 @default.
- W2054368049 cites W2318328795 @default.
- W2054368049 cites W2334322021 @default.
- W2054368049 cites W436297348 @default.
- W2054368049 cites W605448513 @default.
- W2054368049 cites W63566176 @default.
- W2054368049 doi "https://doi.org/10.1016/j.jalgebra.2005.06.001" @default.
- W2054368049 hasPublicationYear "2006" @default.
- W2054368049 type Work @default.
- W2054368049 sameAs 2054368049 @default.
- W2054368049 citedByCount "2" @default.
- W2054368049 crossrefType "journal-article" @default.
- W2054368049 hasAuthorship W2054368049A5019548603 @default.
- W2054368049 hasBestOaLocation W20543680491 @default.
- W2054368049 hasConcept C105795698 @default.
- W2054368049 hasConcept C121332964 @default.
- W2054368049 hasConcept C142259097 @default.
- W2054368049 hasConcept C160343418 @default.
- W2054368049 hasConcept C183778304 @default.
- W2054368049 hasConcept C190470478 @default.
- W2054368049 hasConcept C202444582 @default.
- W2054368049 hasConcept C2524010 @default.
- W2054368049 hasConcept C33923547 @default.
- W2054368049 hasConcept C37914503 @default.
- W2054368049 hasConcept C62520636 @default.
- W2054368049 hasConcept C9767117 @default.
- W2054368049 hasConceptScore W2054368049C105795698 @default.
- W2054368049 hasConceptScore W2054368049C121332964 @default.
- W2054368049 hasConceptScore W2054368049C142259097 @default.
- W2054368049 hasConceptScore W2054368049C160343418 @default.
- W2054368049 hasConceptScore W2054368049C183778304 @default.
- W2054368049 hasConceptScore W2054368049C190470478 @default.
- W2054368049 hasConceptScore W2054368049C202444582 @default.
- W2054368049 hasConceptScore W2054368049C2524010 @default.
- W2054368049 hasConceptScore W2054368049C33923547 @default.
- W2054368049 hasConceptScore W2054368049C37914503 @default.
- W2054368049 hasConceptScore W2054368049C62520636 @default.
- W2054368049 hasConceptScore W2054368049C9767117 @default.
- W2054368049 hasIssue "2" @default.
- W2054368049 hasLocation W20543680491 @default.
- W2054368049 hasOpenAccess W2054368049 @default.
- W2054368049 hasPrimaryLocation W20543680491 @default.
- W2054368049 hasRelatedWork W1981909949 @default.
- W2054368049 hasRelatedWork W1983611176 @default.
- W2054368049 hasRelatedWork W1999336620 @default.
- W2054368049 hasRelatedWork W2002850650 @default.
- W2054368049 hasRelatedWork W2034697303 @default.
- W2054368049 hasRelatedWork W2085985792 @default.
- W2054368049 hasRelatedWork W2088544526 @default.
- W2054368049 hasRelatedWork W2315835544 @default.
- W2054368049 hasRelatedWork W4250534089 @default.
- W2054368049 hasRelatedWork W4255936876 @default.
- W2054368049 hasVolume "297" @default.
- W2054368049 isParatext "false" @default.
- W2054368049 isRetracted "false" @default.
- W2054368049 magId "2054368049" @default.
- W2054368049 workType "article" @default.