Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054407557> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2054407557 endingPage "434" @default.
- W2054407557 startingPage "434" @default.
- W2054407557 abstract "view Abstract Citations (26) References (20) Co-Reads Similar Papers Volume Content Graphics Metrics Export Citation NASA/ADS Klein-Gordon Equation and the Local Critical Frequency for Alfven Waves Propagating in an Isothermal Atmosphere Musielak, Z. E. ; Moore, R. L. Abstract A Klein-Gordon equation approach developed by Musielak, Fontenla, and Moore for assessing reflection of Alfvén waves in a smoothly nonuniform medium is reexamined. In this approach, the local critical frequency for strong reflection is simply found by transforming the wave equations into their Klein-Gordon forms and then choosing the largest positive coefficient of the zeroth-order term to be the square of the local critical frequency. In this paper, we verify this approach for a particular atmosphere and show that the local critical frequency can be alternatively defined by using the turning-point property of Euler's equation. Our results are obtained specifically for steady state, linear Alfvén waves in an isothermal atmosphere with constant gravity and uniform vertical magnetic field. The upward Alfvén waves (those above the wave source) are standing waves and the downward waves (those below the wave source) are propagating waves. We demonstrate that for any given wave frequency both upward and downward waves have the same turning point or critical height. This height is determined by the condition ω = ΩA = VA/2H, where VA is the Alfvén velocity and H is the scale height; ΩA can be taken as the local critical frequency for strong reflection for the upward waves and as the local critical frequency for free propagation for the downward waves. Our turning-point analysis also yields another interesting result: for our particular model atmosphere the magnetic field perturbation wave equation yields the local critical frequency but the velocity-perturbation wave equation does not. Thus, for this model atmosphere, we find that the Klein-Gordon equation approach of Musielak, Fontenla, and Moore is correct in (1) its choice of the magnetic-field-perturbation wave equation for finding the local critical frequency, and (2) its assumption that the upward and downward waves have the same critical frequency. Publication: The Astrophysical Journal Pub Date: October 1995 DOI: 10.1086/176314 Bibcode: 1995ApJ...452..434M Keywords: MAGNETOHYDRODYNAMICS: MHD; STARS: ATMOSPHERES; SUN: CORONA; WAVES full text sources ADS |" @default.
- W2054407557 created "2016-06-24" @default.
- W2054407557 creator A5028452828 @default.
- W2054407557 creator A5077269579 @default.
- W2054407557 date "1995-10-01" @default.
- W2054407557 modified "2023-09-27" @default.
- W2054407557 title "Klein-Gordon Equation and the Local Critical Frequency for Alfven Waves Propagating in an Isothermal Atmosphere" @default.
- W2054407557 doi "https://doi.org/10.1086/176314" @default.
- W2054407557 hasPublicationYear "1995" @default.
- W2054407557 type Work @default.
- W2054407557 sameAs 2054407557 @default.
- W2054407557 citedByCount "26" @default.
- W2054407557 countsByYear W20544075572012 @default.
- W2054407557 countsByYear W20544075572013 @default.
- W2054407557 countsByYear W20544075572014 @default.
- W2054407557 countsByYear W20544075572015 @default.
- W2054407557 countsByYear W20544075572017 @default.
- W2054407557 countsByYear W20544075572019 @default.
- W2054407557 countsByYear W20544075572021 @default.
- W2054407557 crossrefType "journal-article" @default.
- W2054407557 hasAuthorship W2054407557A5028452828 @default.
- W2054407557 hasAuthorship W2054407557A5077269579 @default.
- W2054407557 hasConcept C116403925 @default.
- W2054407557 hasConcept C120665830 @default.
- W2054407557 hasConcept C121332964 @default.
- W2054407557 hasConcept C143351421 @default.
- W2054407557 hasConcept C153294291 @default.
- W2054407557 hasConcept C199360897 @default.
- W2054407557 hasConcept C199956316 @default.
- W2054407557 hasConcept C30475298 @default.
- W2054407557 hasConcept C41008148 @default.
- W2054407557 hasConcept C44886760 @default.
- W2054407557 hasConcept C65440619 @default.
- W2054407557 hasConcept C65682993 @default.
- W2054407557 hasConcept C74650414 @default.
- W2054407557 hasConcept C8058405 @default.
- W2054407557 hasConcept C87635042 @default.
- W2054407557 hasConceptScore W2054407557C116403925 @default.
- W2054407557 hasConceptScore W2054407557C120665830 @default.
- W2054407557 hasConceptScore W2054407557C121332964 @default.
- W2054407557 hasConceptScore W2054407557C143351421 @default.
- W2054407557 hasConceptScore W2054407557C153294291 @default.
- W2054407557 hasConceptScore W2054407557C199360897 @default.
- W2054407557 hasConceptScore W2054407557C199956316 @default.
- W2054407557 hasConceptScore W2054407557C30475298 @default.
- W2054407557 hasConceptScore W2054407557C41008148 @default.
- W2054407557 hasConceptScore W2054407557C44886760 @default.
- W2054407557 hasConceptScore W2054407557C65440619 @default.
- W2054407557 hasConceptScore W2054407557C65682993 @default.
- W2054407557 hasConceptScore W2054407557C74650414 @default.
- W2054407557 hasConceptScore W2054407557C8058405 @default.
- W2054407557 hasConceptScore W2054407557C87635042 @default.
- W2054407557 hasLocation W20544075571 @default.
- W2054407557 hasOpenAccess W2054407557 @default.
- W2054407557 hasPrimaryLocation W20544075571 @default.
- W2054407557 hasRelatedWork W1662315304 @default.
- W2054407557 hasRelatedWork W2023259580 @default.
- W2054407557 hasRelatedWork W2030214849 @default.
- W2054407557 hasRelatedWork W2043164421 @default.
- W2054407557 hasRelatedWork W2056136258 @default.
- W2054407557 hasRelatedWork W2064124366 @default.
- W2054407557 hasRelatedWork W2149621789 @default.
- W2054407557 hasRelatedWork W2388482455 @default.
- W2054407557 hasRelatedWork W3172935295 @default.
- W2054407557 hasRelatedWork W4251759357 @default.
- W2054407557 hasVolume "452" @default.
- W2054407557 isParatext "false" @default.
- W2054407557 isRetracted "false" @default.
- W2054407557 magId "2054407557" @default.
- W2054407557 workType "article" @default.