Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054667848> ?p ?o ?g. }
- W2054667848 endingPage "715" @default.
- W2054667848 startingPage "645" @default.
- W2054667848 abstract "Abstract The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President’s Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbonintensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing commercial CO2 capture facilities at electric power-generating stations based on the use of monoethanolamine are described, as is the Rectisol process used by Dakota Gasification to separate and capture CO2 from a coal gasifier. Two technologies for storage of the captured CO2 are reviewed—sequestration in deep unmineable coalbeds with concomitant recovery of CH4 and sequestration in deep saline aquifers. Key issues for both of these techniques include estimating the potential storage capacity, the storage integrity, and the physical and chemical processes that are initiated by injecting CO2 underground. Recent studies using computer modeling as well as laboratory and field experimentation are presented here. In addition, several projects have been initiated in which CO2 is injected into a deep coal seam or saline aquifer. The current status of several such projects is discussed. Included is a commercial-scale project in which a million tons of CO2 are injected annually into an aquifer under the North Sea in Norway. The review makes the case that this can all be accomplished safely with off-the-shelf technologies. However, substantial research and development must be performed to reduce the cost, decrease the risks, and increase the safety of sequestration technologies. This review also includes discussion of possible problems related to deep injection of CO2 . There are safety concerns that need to be addressed because of the possibilities of leakage to the surface and induced seismic activity. These issues are presented along with a case study of a similar incident in the past. It is clear that monitoring and verification of storage will be a crucial part of all geological sequestration practices so that such problems may be avoided. Available techniques include direct measurement of CO2 and CH4 surface soil fluxes, the use of chemical tracers, and underground 4-D seismic monitoring. Ten new hypotheses were formulated to describe what happens when CO2 is pumped into a coal seam. These hypotheses provide significant insight into the fundamental chemical, physical, and thermodynamic phenomena that occur during coal seam sequestration of CO2 ." @default.
- W2054667848 created "2016-06-24" @default.
- W2054667848 creator A5009487190 @default.
- W2054667848 creator A5011160548 @default.
- W2054667848 creator A5022401877 @default.
- W2054667848 creator A5053362335 @default.
- W2054667848 creator A5081353981 @default.
- W2054667848 date "2003-06-01" @default.
- W2054667848 modified "2023-10-18" @default.
- W2054667848 title "Separation and Capture of CO<sub>2</sub>from Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers" @default.
- W2054667848 cites W1486204504 @default.
- W2054667848 cites W1494450863 @default.
- W2054667848 cites W1501328393 @default.
- W2054667848 cites W1503301144 @default.
- W2054667848 cites W1507335554 @default.
- W2054667848 cites W1515263224 @default.
- W2054667848 cites W151691783 @default.
- W2054667848 cites W1522775515 @default.
- W2054667848 cites W1523217968 @default.
- W2054667848 cites W1523369348 @default.
- W2054667848 cites W1533179457 @default.
- W2054667848 cites W1534675063 @default.
- W2054667848 cites W1535955106 @default.
- W2054667848 cites W1557698422 @default.
- W2054667848 cites W1557741554 @default.
- W2054667848 cites W1562266347 @default.
- W2054667848 cites W1565184768 @default.
- W2054667848 cites W1568629588 @default.
- W2054667848 cites W1572020337 @default.
- W2054667848 cites W1579974546 @default.
- W2054667848 cites W1584524885 @default.
- W2054667848 cites W1598956341 @default.
- W2054667848 cites W1602299146 @default.
- W2054667848 cites W164016852 @default.
- W2054667848 cites W167319341 @default.
- W2054667848 cites W183876348 @default.
- W2054667848 cites W1966941707 @default.
- W2054667848 cites W1967137664 @default.
- W2054667848 cites W1983537548 @default.
- W2054667848 cites W1986534183 @default.
- W2054667848 cites W2001698371 @default.
- W2054667848 cites W2014072686 @default.
- W2054667848 cites W2019036565 @default.
- W2054667848 cites W2019570994 @default.
- W2054667848 cites W2032501593 @default.
- W2054667848 cites W2044714298 @default.
- W2054667848 cites W2046897 @default.
- W2054667848 cites W2049827294 @default.
- W2054667848 cites W2056124894 @default.
- W2054667848 cites W2058091152 @default.
- W2054667848 cites W2060644600 @default.
- W2054667848 cites W2063838512 @default.
- W2054667848 cites W206451160 @default.
- W2054667848 cites W2072053703 @default.
- W2054667848 cites W2078595014 @default.
- W2054667848 cites W2120807777 @default.
- W2054667848 cites W2138914857 @default.
- W2054667848 cites W2145009485 @default.
- W2054667848 cites W2170370919 @default.
- W2054667848 cites W2202460081 @default.
- W2054667848 cites W2285528348 @default.
- W2054667848 cites W2363661284 @default.
- W2054667848 cites W24285336 @default.
- W2054667848 cites W2479444961 @default.
- W2054667848 cites W2480549414 @default.
- W2054667848 cites W2483138440 @default.
- W2054667848 cites W2484543976 @default.
- W2054667848 cites W2489210373 @default.
- W2054667848 cites W2492659429 @default.
- W2054667848 cites W2493350359 @default.
- W2054667848 cites W2495498946 @default.
- W2054667848 cites W2498125580 @default.
- W2054667848 cites W2505344173 @default.
- W2054667848 cites W2506989810 @default.
- W2054667848 cites W2611933697 @default.
- W2054667848 cites W268173000 @default.
- W2054667848 cites W2811228097 @default.
- W2054667848 cites W2911562781 @default.
- W2054667848 cites W3844485 @default.
- W2054667848 cites W4233541784 @default.
- W2054667848 cites W4235254966 @default.
- W2054667848 cites W4235369707 @default.
- W2054667848 cites W4242104252 @default.
- W2054667848 cites W4243620550 @default.
- W2054667848 cites W4253510235 @default.
- W2054667848 cites W4256234863 @default.
- W2054667848 cites W4388355 @default.
- W2054667848 cites W45681194 @default.
- W2054667848 cites W45940499 @default.
- W2054667848 cites W48286883 @default.
- W2054667848 cites W53252096 @default.
- W2054667848 cites W60393514 @default.
- W2054667848 cites W7259045 @default.
- W2054667848 cites W8532566 @default.
- W2054667848 cites W1517493736 @default.
- W2054667848 doi "https://doi.org/10.1080/10473289.2003.10466206" @default.
- W2054667848 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12828330" @default.
- W2054667848 hasPublicationYear "2003" @default.