Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054835522> ?p ?o ?g. }
- W2054835522 endingPage "643" @default.
- W2054835522 startingPage "635" @default.
- W2054835522 abstract "•The skeletal muscle autophagy signaling pathways contain many new, novel regulators. •The benefits of exercise involve regulating skeletal muscle autophagy. •Skeletal muscle autophagy requires a very fine balance for healthy muscle. •Stored nutrients can be trafficked by autophagy and broken down in the lysosome. Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Proper autophagic flux is vital for both functional skeletal muscle, which controls the support and movement of the skeleton, and muscle metabolism. The role of autophagy as a metabolic regulator in muscle has been previously studied; however, the underlying molecular mechanisms that control autophagy in skeletal muscle have only recently begun to emerge. We review recent literature on the molecular pathways controlling skeletal muscle autophagy and discuss how they connect autophagy to metabolic regulation. We also focus on the implications these studies hold for understanding metabolic and muscle-wasting diseases. Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Proper autophagic flux is vital for both functional skeletal muscle, which controls the support and movement of the skeleton, and muscle metabolism. The role of autophagy as a metabolic regulator in muscle has been previously studied; however, the underlying molecular mechanisms that control autophagy in skeletal muscle have only recently begun to emerge. We review recent literature on the molecular pathways controlling skeletal muscle autophagy and discuss how they connect autophagy to metabolic regulation. We also focus on the implications these studies hold for understanding metabolic and muscle-wasting diseases. a conserved family of over 30 autophagy-related proteins that function at various steps within the autophagic signal transduction pathway. a transcription factor and member of the O subclass of forkhead box proteins. It is regulated primarily by Akt via phosphorylation. Phosphorylated FoxO3 is retained in the cytoplasm and unable to activate target gene transcription. FoxO3 regulates the expression of vital degradative proteins in skeletal muscle, such as those that function in the proteasomal and autophagic pathways. a specific autophagic process used to traffic lipids to the lysosome. The acidic lipase, LIPA, then functions to degrade lipids to their free fatty acid components and the resulting nutrients are released from the lysosome. an organelle specifically utilized to digest cellular components delivered to it via autophagy or endosomal trafficking. It is characterized by an acidic environment comprised of acid hydrolase enzymes used to digest incoming organelles, proteins, and cytoplasm. a conserved physiological process by which the cell degrades cytoplasm, proteins, and/or organelles via transportation in an autophagosome to the lysosome. This pathway functions to degrade damaged or aged cellular components, break down undedicated nutrient stores, or alter cellular architecture/morphology. a conserved serine/threonine kinase that is part of larger protein complexes (mTORC1/mTORC2). It functions as a nutrient sensor by sensing incoming signals from amino acids and growth factors. This is coupled to the regulation of downstream pathways controlling such processes as protein synthesis, autophagy, energy metabolism, lipid synthesis, and lysosome biogenesis. a group of genetic diseases resulting in progressive muscle-wasting, also known as muscular dystrophy. a decline in muscle function leading to weakness, pain, and loss of movement due to a variety of conditions such as inactivity, denervation, and systemic diseases. one of three types of muscle characterized by their connection to bone via tendons that enable voluntary bodily movements. Skeletal muscle is composed of elongated, multinucleated cells termed myofibers that are made of organized, repeating cylinders of myofibrils. These contain the basic contractile unit termed the sarcomere, which contains the filament, actin, and the motor protein, myosin. Skeletal muscle can be broken down into two main subtypes: red, slow, oxidative, type I and white, fast, glycolytic, type II muscle." @default.
- W2054835522 created "2016-06-24" @default.
- W2054835522 creator A5051054289 @default.
- W2054835522 creator A5069930137 @default.
- W2054835522 creator A5077728712 @default.
- W2054835522 date "2013-12-01" @default.
- W2054835522 modified "2023-10-06" @default.
- W2054835522 title "Skeletal muscle autophagy: a new metabolic regulator" @default.
- W2054835522 cites W1911045794 @default.
- W2054835522 cites W1970637701 @default.
- W2054835522 cites W1973622869 @default.
- W2054835522 cites W1981831271 @default.
- W2054835522 cites W1993497859 @default.
- W2054835522 cites W1994823455 @default.
- W2054835522 cites W1996735611 @default.
- W2054835522 cites W1996885736 @default.
- W2054835522 cites W2000731858 @default.
- W2054835522 cites W2001776102 @default.
- W2054835522 cites W2002090266 @default.
- W2054835522 cites W2002636911 @default.
- W2054835522 cites W2004771098 @default.
- W2054835522 cites W2007505836 @default.
- W2054835522 cites W2008497283 @default.
- W2054835522 cites W2012329777 @default.
- W2054835522 cites W2016815316 @default.
- W2054835522 cites W2020444654 @default.
- W2054835522 cites W2025139842 @default.
- W2054835522 cites W2025192214 @default.
- W2054835522 cites W2032035791 @default.
- W2054835522 cites W2033228345 @default.
- W2054835522 cites W2036275511 @default.
- W2054835522 cites W2036787961 @default.
- W2054835522 cites W2039607936 @default.
- W2054835522 cites W2040280675 @default.
- W2054835522 cites W2040691328 @default.
- W2054835522 cites W2045927301 @default.
- W2054835522 cites W2049016912 @default.
- W2054835522 cites W2051175021 @default.
- W2054835522 cites W2057274775 @default.
- W2054835522 cites W2060129186 @default.
- W2054835522 cites W2060364936 @default.
- W2054835522 cites W2060792177 @default.
- W2054835522 cites W2076731344 @default.
- W2054835522 cites W2079514765 @default.
- W2054835522 cites W2079569342 @default.
- W2054835522 cites W2080389159 @default.
- W2054835522 cites W2082476985 @default.
- W2054835522 cites W2082905129 @default.
- W2054835522 cites W2084120966 @default.
- W2054835522 cites W2084470407 @default.
- W2054835522 cites W2090224335 @default.
- W2054835522 cites W2097367553 @default.
- W2054835522 cites W2103545941 @default.
- W2054835522 cites W2104467943 @default.
- W2054835522 cites W2107045511 @default.
- W2054835522 cites W2108486519 @default.
- W2054835522 cites W2109034822 @default.
- W2054835522 cites W2111607026 @default.
- W2054835522 cites W2114063620 @default.
- W2054835522 cites W2115742671 @default.
- W2054835522 cites W2115888489 @default.
- W2054835522 cites W2117351967 @default.
- W2054835522 cites W2128677681 @default.
- W2054835522 cites W2130025116 @default.
- W2054835522 cites W2130059531 @default.
- W2054835522 cites W2130241430 @default.
- W2054835522 cites W2131049299 @default.
- W2054835522 cites W2135002082 @default.
- W2054835522 cites W2137704349 @default.
- W2054835522 cites W2139285220 @default.
- W2054835522 cites W2141000092 @default.
- W2054835522 cites W2159796957 @default.
- W2054835522 cites W2164029978 @default.
- W2054835522 cites W2164316354 @default.
- W2054835522 cites W2165629043 @default.
- W2054835522 cites W2169836157 @default.
- W2054835522 cites W2197107516 @default.
- W2054835522 cites W2329843257 @default.
- W2054835522 doi "https://doi.org/10.1016/j.tem.2013.09.004" @default.
- W2054835522 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3849822" @default.
- W2054835522 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24182456" @default.
- W2054835522 hasPublicationYear "2013" @default.
- W2054835522 type Work @default.
- W2054835522 sameAs 2054835522 @default.
- W2054835522 citedByCount "133" @default.
- W2054835522 countsByYear W20548355222014 @default.
- W2054835522 countsByYear W20548355222015 @default.
- W2054835522 countsByYear W20548355222016 @default.
- W2054835522 countsByYear W20548355222017 @default.
- W2054835522 countsByYear W20548355222018 @default.
- W2054835522 countsByYear W20548355222019 @default.
- W2054835522 countsByYear W20548355222020 @default.
- W2054835522 countsByYear W20548355222021 @default.
- W2054835522 countsByYear W20548355222022 @default.
- W2054835522 countsByYear W20548355222023 @default.
- W2054835522 crossrefType "journal-article" @default.
- W2054835522 hasAuthorship W2054835522A5051054289 @default.
- W2054835522 hasAuthorship W2054835522A5069930137 @default.