Matches in SemOpenAlex for { <https://semopenalex.org/work/W2054927102> ?p ?o ?g. }
- W2054927102 endingPage "4783" @default.
- W2054927102 startingPage "4753" @default.
- W2054927102 abstract "Providing accurate maps of mangroves, where the spatial scales of the mapped features correspond to the ecological structures and processes, as opposed to pixel sizes and mapping approaches, is a major challenge for remote sensing. This study developed and evaluated an object-based approach to understand what types of mangrove information can be mapped using different image datasets (Landsat TM, ALOS AVNIR-2, WorldView-2, and LiDAR). We compared and contrasted the ability of these images to map five levels of mangrove features, including vegetation boundary, mangrove stands, mangrove zonations, individual tree crowns, and species communities. We used the Moreton Bay site in Australia as the primary site to develop the classification rule sets and Karimunjawa Island in Indonesia to test the applicability of the rule sets. The results demonstrated the effectiveness of a conceptual hierarchical model for mapping specific mangrove features at discrete spatial scales. However, the rule sets developed in this study require modification to map similar mangrove features at different locations or when using image data acquired by different sensors. Across the hierarchical levels, smaller object sizes (i.e., tree crowns) required more complex classification rule sets. Incorporation of contextual information (e.g., distance and elevation) increased the overall mapping accuracy at the mangrove stand level (from 85% to 94%) and mangrove zonation level (from 53% to 59%). We found that higher image spatial resolution, larger object size, and fewer land-cover classes result in higher mapping accuracies. This study highlights the potential of selected images and mapping techniques to map mangrove features, and provides guidance for how to do this effectively through multi-scale mangrove composition mapping." @default.
- W2054927102 created "2016-06-24" @default.
- W2054927102 creator A5004573971 @default.
- W2054927102 creator A5084933028 @default.
- W2054927102 creator A5089152837 @default.
- W2054927102 date "2015-04-17" @default.
- W2054927102 modified "2023-10-06" @default.
- W2054927102 title "Object-Based Approach for Multi-Scale Mangrove Composition Mapping Using Multi-Resolution Image Datasets" @default.
- W2054927102 cites W1513225894 @default.
- W2054927102 cites W1968652607 @default.
- W2054927102 cites W1969602863 @default.
- W2054927102 cites W1978487267 @default.
- W2054927102 cites W1984366757 @default.
- W2054927102 cites W1984792953 @default.
- W2054927102 cites W1989655334 @default.
- W2054927102 cites W1993956929 @default.
- W2054927102 cites W1997647946 @default.
- W2054927102 cites W1999339207 @default.
- W2054927102 cites W2003595682 @default.
- W2054927102 cites W2016210360 @default.
- W2054927102 cites W2017149977 @default.
- W2054927102 cites W2021306799 @default.
- W2054927102 cites W2022070207 @default.
- W2054927102 cites W2027532349 @default.
- W2054927102 cites W2030078894 @default.
- W2054927102 cites W2030106896 @default.
- W2054927102 cites W2031024973 @default.
- W2054927102 cites W2031456617 @default.
- W2054927102 cites W2040766929 @default.
- W2054927102 cites W2043708859 @default.
- W2054927102 cites W2046404979 @default.
- W2054927102 cites W2049233123 @default.
- W2054927102 cites W2056939037 @default.
- W2054927102 cites W2058962516 @default.
- W2054927102 cites W2063771995 @default.
- W2054927102 cites W2069036524 @default.
- W2054927102 cites W2070121567 @default.
- W2054927102 cites W2075046504 @default.
- W2054927102 cites W2076601391 @default.
- W2054927102 cites W2079069441 @default.
- W2054927102 cites W2080092916 @default.
- W2054927102 cites W2082148511 @default.
- W2054927102 cites W2086141297 @default.
- W2054927102 cites W2086316193 @default.
- W2054927102 cites W2096002337 @default.
- W2054927102 cites W2101077235 @default.
- W2054927102 cites W2103079830 @default.
- W2054927102 cites W2105058098 @default.
- W2054927102 cites W2105554350 @default.
- W2054927102 cites W2109810763 @default.
- W2054927102 cites W2111845801 @default.
- W2054927102 cites W2112464514 @default.
- W2054927102 cites W2121472011 @default.
- W2054927102 cites W2121476754 @default.
- W2054927102 cites W2125036947 @default.
- W2054927102 cites W2126236168 @default.
- W2054927102 cites W2138973222 @default.
- W2054927102 cites W2139387700 @default.
- W2054927102 cites W2145448441 @default.
- W2054927102 cites W2151426712 @default.
- W2054927102 cites W2158677263 @default.
- W2054927102 cites W2159807629 @default.
- W2054927102 cites W2160615957 @default.
- W2054927102 cites W2161848987 @default.
- W2054927102 cites W2167463602 @default.
- W2054927102 cites W2188761847 @default.
- W2054927102 cites W4237981427 @default.
- W2054927102 doi "https://doi.org/10.3390/rs70404753" @default.
- W2054927102 hasPublicationYear "2015" @default.
- W2054927102 type Work @default.
- W2054927102 sameAs 2054927102 @default.
- W2054927102 citedByCount "126" @default.
- W2054927102 countsByYear W20549271022015 @default.
- W2054927102 countsByYear W20549271022016 @default.
- W2054927102 countsByYear W20549271022017 @default.
- W2054927102 countsByYear W20549271022018 @default.
- W2054927102 countsByYear W20549271022019 @default.
- W2054927102 countsByYear W20549271022020 @default.
- W2054927102 countsByYear W20549271022021 @default.
- W2054927102 countsByYear W20549271022022 @default.
- W2054927102 countsByYear W20549271022023 @default.
- W2054927102 crossrefType "journal-article" @default.
- W2054927102 hasAuthorship W2054927102A5004573971 @default.
- W2054927102 hasAuthorship W2054927102A5084933028 @default.
- W2054927102 hasAuthorship W2054927102A5089152837 @default.
- W2054927102 hasBestOaLocation W20549271021 @default.
- W2054927102 hasConcept C142724271 @default.
- W2054927102 hasConcept C154945302 @default.
- W2054927102 hasConcept C18903297 @default.
- W2054927102 hasConcept C205649164 @default.
- W2054927102 hasConcept C2776133958 @default.
- W2054927102 hasConcept C2778755073 @default.
- W2054927102 hasConcept C2780648208 @default.
- W2054927102 hasConcept C2781238097 @default.
- W2054927102 hasConcept C3019973339 @default.
- W2054927102 hasConcept C41008148 @default.
- W2054927102 hasConcept C4792198 @default.
- W2054927102 hasConcept C58640448 @default.