Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055141025> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2055141025 endingPage "294" @default.
- W2055141025 startingPage "245" @default.
- W2055141025 abstract "With continued advances in communication network technology and sensing technology, there is astounding growth in the amount of data produced and made available through cyberspace. Efficient and high-quality clustering of large datasets continues to be one of the most important problems in large-scale data analysis. A commonly used methodology for cluster analysis on large datasets is the three-phase framework of sampling/summarization, iterative cluster analysis, and disk-labeling. There are three known problems with this framework which demand effective solutions. The first problem is how to effectively define and validate irregularly shaped clusters, especially in large datasets. Automated algorithms and statistical methods are typically not effective in handling these particular clusters. The second problem is how to effectively label the entire data on disk (disk-labeling) without introducing additional errors, including the solutions for dealing with outliers, irregular clusters, and cluster boundary extension. The third obstacle is the lack of research about issues related to effectively integrating the three phases. In this article, we describe iVIBRATE---an interactive visualization-based three-phase framework for clustering large datasets. The two main components of iVIBRATE are its VISTA visual cluster-rendering subsystem which invites human interplay into the large-scale iterative clustering process through interactive visualization, and its adaptive ClusterMap labeling subsystem which offers visualization-guided disk-labeling solutions that are effective in dealing with outliers, irregular clusters, and cluster boundary extension. Another important contribution of iVIBRATE development is the identification of the special issues presented in integrating the two components and the sampling approach into a coherent framework, as well as the solutions for improving the reliability of the framework and for minimizing the amount of errors generated within the cluster analysis process. We study the effectiveness of the iVIBRATE framework through a walkthrough example dataset of a million records and we experimentally evaluate the iVIBRATE approach using both real-life and synthetic datasets. Our results show that iVIBRATE can efficiently involve the user in the clustering process and generate high-quality clustering results for large datasets." @default.
- W2055141025 created "2016-06-24" @default.
- W2055141025 creator A5002572745 @default.
- W2055141025 creator A5017360203 @default.
- W2055141025 date "2006-04-01" @default.
- W2055141025 modified "2023-09-27" @default.
- W2055141025 title "iVIBRATE" @default.
- W2055141025 cites W1978841917 @default.
- W2055141025 cites W1990100773 @default.
- W2055141025 cites W1992419399 @default.
- W2055141025 cites W2003177010 @default.
- W2055141025 cites W2024668293 @default.
- W2055141025 cites W2040226816 @default.
- W2055141025 cites W2057712948 @default.
- W2055141025 cites W2062937620 @default.
- W2055141025 cites W2119885577 @default.
- W2055141025 cites W2125564169 @default.
- W2055141025 cites W2141585940 @default.
- W2055141025 cites W2145036943 @default.
- W2055141025 cites W2146574743 @default.
- W2055141025 cites W2158312857 @default.
- W2055141025 cites W2164625805 @default.
- W2055141025 cites W2171034893 @default.
- W2055141025 cites W2504658994 @default.
- W2055141025 cites W3022700673 @default.
- W2055141025 cites W4252316495 @default.
- W2055141025 doi "https://doi.org/10.1145/1148020.1148024" @default.
- W2055141025 hasPublicationYear "2006" @default.
- W2055141025 type Work @default.
- W2055141025 sameAs 2055141025 @default.
- W2055141025 citedByCount "54" @default.
- W2055141025 countsByYear W20551410252012 @default.
- W2055141025 countsByYear W20551410252013 @default.
- W2055141025 countsByYear W20551410252014 @default.
- W2055141025 countsByYear W20551410252015 @default.
- W2055141025 countsByYear W20551410252016 @default.
- W2055141025 countsByYear W20551410252017 @default.
- W2055141025 countsByYear W20551410252018 @default.
- W2055141025 countsByYear W20551410252019 @default.
- W2055141025 countsByYear W20551410252020 @default.
- W2055141025 countsByYear W20551410252022 @default.
- W2055141025 countsByYear W20551410252023 @default.
- W2055141025 crossrefType "journal-article" @default.
- W2055141025 hasAuthorship W2055141025A5002572745 @default.
- W2055141025 hasAuthorship W2055141025A5017360203 @default.
- W2055141025 hasConcept C119857082 @default.
- W2055141025 hasConcept C124101348 @default.
- W2055141025 hasConcept C154945302 @default.
- W2055141025 hasConcept C170858558 @default.
- W2055141025 hasConcept C23123220 @default.
- W2055141025 hasConcept C36464697 @default.
- W2055141025 hasConcept C41008148 @default.
- W2055141025 hasConcept C73555534 @default.
- W2055141025 hasConcept C79337645 @default.
- W2055141025 hasConceptScore W2055141025C119857082 @default.
- W2055141025 hasConceptScore W2055141025C124101348 @default.
- W2055141025 hasConceptScore W2055141025C154945302 @default.
- W2055141025 hasConceptScore W2055141025C170858558 @default.
- W2055141025 hasConceptScore W2055141025C23123220 @default.
- W2055141025 hasConceptScore W2055141025C36464697 @default.
- W2055141025 hasConceptScore W2055141025C41008148 @default.
- W2055141025 hasConceptScore W2055141025C73555534 @default.
- W2055141025 hasConceptScore W2055141025C79337645 @default.
- W2055141025 hasIssue "2" @default.
- W2055141025 hasLocation W20551410251 @default.
- W2055141025 hasOpenAccess W2055141025 @default.
- W2055141025 hasPrimaryLocation W20551410251 @default.
- W2055141025 hasRelatedWork W1559971515 @default.
- W2055141025 hasRelatedWork W2337929971 @default.
- W2055141025 hasRelatedWork W2351187795 @default.
- W2055141025 hasRelatedWork W2360069064 @default.
- W2055141025 hasRelatedWork W2811233515 @default.
- W2055141025 hasRelatedWork W3130428409 @default.
- W2055141025 hasRelatedWork W3183283580 @default.
- W2055141025 hasRelatedWork W4250175685 @default.
- W2055141025 hasRelatedWork W4283741549 @default.
- W2055141025 hasRelatedWork W4313069709 @default.
- W2055141025 hasVolume "24" @default.
- W2055141025 isParatext "false" @default.
- W2055141025 isRetracted "false" @default.
- W2055141025 magId "2055141025" @default.
- W2055141025 workType "article" @default.