Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055142670> ?p ?o ?g. }
- W2055142670 endingPage "2778" @default.
- W2055142670 startingPage "2760" @default.
- W2055142670 abstract "The redox state of Precambrian shallow seas has been linked with material cycle and evolution of the photosynthesis-based ecosystem. Iron is a redox-sensitive element and exists as a soluble Fe(II) species or insoluble Fe(III) species on Earth’s surface. Previous studies have shown that the iron isotopic ratio of marine sedimentary minerals is useful for understanding the ocean redox state, although the redox state of the Archean shallow sea is poorly known. This is partly because the conventional bulk isotope analytical technique has often been used, wherein the iron isotopic record may be dampened by the presence of isotopically different iron-bearing minerals within the same sample. Here we report a microscale iron isotopic ratio of individual pyrite grains in shallow marine stromatolitic carbonates over geological time using a newly developed, near-infrared femtosecond laser ablation multicollector ICP-MS technique (NIR-fs-LA-MC-ICP-MS). We have determined that the grain-scale iron isotopic distribution of pyrite from coeval samples shows a bimodal (2.7 and 2.3 Ga) or unimodal pattern (2.9, 2.6, and 0.7 Ga). In particular, pyrite from the 2.7 Ga Fortescue Group shows a unique bimodal distribution with highly positive (+1.0‰ defined as Type 1) and negative δ56Fe values (−1.8‰ defined as Type 2). Type 1 and 2 pyrites occasionally occur within different siliceous layers in the same rock specimen. Layer-scale iron isotopic heterogeneity indicates that the iron isotopic ratios of the two types of pyrite are not homogenized by diagenesis after deposition. Some cubic pyrites have a core with a positive δ56Fe value (1‰) and a rim with a crustal δ56Fe value (0‰). The observed isotopic zoning suggests that the positive δ56Fe value is a primary signature at the time of stromatolite formation, while secondary pyrite precipitated during diagenesis. The positive δ56Fe value of Type 1 and the large iron isotopic difference between Type 1 and 2 (2.8‰.) suggest partial Fe(II) oxidation in the 2.7-Ga shallow sea, i.e., pyritization of 56Fe-enriched ferric oxyhydroxide (Type 1) and 56Fe depleted Fe2+aq in seawater (Type 2). Type 2 pyrite was probably not produced by microbial iron redox cycling during diagenesis because this scenario requires a higher abundance of pyrite with δ56Fe of 0‰ than of −1.8‰. Consequently, the degree of Fe(II) oxidation in the 2.7-Ga shallow sea can be estimated by a Fe2+aq steady-state model. The model calculation shows that half the Fe2+aq influx was oxidized in the seawater. This implies that O2 produced by photosynthesis would have been completely consumed by oxidation of the Fe2+aq influx. Grain-scale iron isotopic distribution of pyrite could be a useful index for reconstructing the redox state of the Archean shallow sea." @default.
- W2055142670 created "2016-06-24" @default.
- W2055142670 creator A5000130543 @default.
- W2055142670 creator A5002155845 @default.
- W2055142670 creator A5004038402 @default.
- W2055142670 creator A5025560226 @default.
- W2055142670 creator A5033127207 @default.
- W2055142670 creator A5037346718 @default.
- W2055142670 creator A5064566656 @default.
- W2055142670 creator A5071225732 @default.
- W2055142670 creator A5075648208 @default.
- W2055142670 creator A5080317984 @default.
- W2055142670 creator A5080953096 @default.
- W2055142670 creator A5083737709 @default.
- W2055142670 date "2010-05-01" @default.
- W2055142670 modified "2023-10-15" @default.
- W2055142670 title "Grain-scale iron isotopic distribution of pyrite from Precambrian shallow marine carbonate revealed by a femtosecond laser ablation multicollector ICP-MS technique: Possible proxy for the redox state of ancient seawater" @default.
- W2055142670 cites W1538607061 @default.
- W2055142670 cites W1967199319 @default.
- W2055142670 cites W1967509775 @default.
- W2055142670 cites W1969594792 @default.
- W2055142670 cites W1974884380 @default.
- W2055142670 cites W1977246079 @default.
- W2055142670 cites W1981263778 @default.
- W2055142670 cites W1982821492 @default.
- W2055142670 cites W1984679950 @default.
- W2055142670 cites W1984854172 @default.
- W2055142670 cites W1987716298 @default.
- W2055142670 cites W1988435801 @default.
- W2055142670 cites W1988950854 @default.
- W2055142670 cites W1991569790 @default.
- W2055142670 cites W1993564178 @default.
- W2055142670 cites W1999057913 @default.
- W2055142670 cites W1999153555 @default.
- W2055142670 cites W2004373591 @default.
- W2055142670 cites W2007458249 @default.
- W2055142670 cites W2009778629 @default.
- W2055142670 cites W2009888423 @default.
- W2055142670 cites W2014523333 @default.
- W2055142670 cites W2015171931 @default.
- W2055142670 cites W2015486605 @default.
- W2055142670 cites W2016004304 @default.
- W2055142670 cites W2018665772 @default.
- W2055142670 cites W2021289303 @default.
- W2055142670 cites W2023346087 @default.
- W2055142670 cites W2024731134 @default.
- W2055142670 cites W2026133329 @default.
- W2055142670 cites W2026909703 @default.
- W2055142670 cites W2031781283 @default.
- W2055142670 cites W2035866696 @default.
- W2055142670 cites W2040992972 @default.
- W2055142670 cites W2042372974 @default.
- W2055142670 cites W2046676712 @default.
- W2055142670 cites W2052099565 @default.
- W2055142670 cites W2054150386 @default.
- W2055142670 cites W2054861741 @default.
- W2055142670 cites W2058299864 @default.
- W2055142670 cites W2063281115 @default.
- W2055142670 cites W2064134384 @default.
- W2055142670 cites W2066230963 @default.
- W2055142670 cites W2069013735 @default.
- W2055142670 cites W2071409717 @default.
- W2055142670 cites W2074797379 @default.
- W2055142670 cites W2075797566 @default.
- W2055142670 cites W2077396877 @default.
- W2055142670 cites W2087572745 @default.
- W2055142670 cites W2088293173 @default.
- W2055142670 cites W2089873370 @default.
- W2055142670 cites W2091875871 @default.
- W2055142670 cites W2096876945 @default.
- W2055142670 cites W2100343435 @default.
- W2055142670 cites W2103736179 @default.
- W2055142670 cites W2105853832 @default.
- W2055142670 cites W2107109600 @default.
- W2055142670 cites W2111761293 @default.
- W2055142670 cites W2114891999 @default.
- W2055142670 cites W2117994991 @default.
- W2055142670 cites W2120069165 @default.
- W2055142670 cites W2128185490 @default.
- W2055142670 cites W2130723340 @default.
- W2055142670 cites W2137854548 @default.
- W2055142670 cites W2139633475 @default.
- W2055142670 cites W2143242500 @default.
- W2055142670 cites W2148739779 @default.
- W2055142670 cites W2149018574 @default.
- W2055142670 cites W2155256780 @default.
- W2055142670 cites W2156751329 @default.
- W2055142670 cites W2162395880 @default.
- W2055142670 cites W2163858301 @default.
- W2055142670 cites W2165859073 @default.
- W2055142670 cites W2169641074 @default.
- W2055142670 doi "https://doi.org/10.1016/j.gca.2010.02.014" @default.
- W2055142670 hasPublicationYear "2010" @default.
- W2055142670 type Work @default.
- W2055142670 sameAs 2055142670 @default.
- W2055142670 citedByCount "55" @default.
- W2055142670 countsByYear W20551426702012 @default.
- W2055142670 countsByYear W20551426702013 @default.