Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055173372> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2055173372 endingPage "6088" @default.
- W2055173372 startingPage "6082" @default.
- W2055173372 abstract "The cross-sensitivity of chemical sensors for several metal ions resembles in a way the overlapping sensitivity of some biological sensors, like the optical colour receptors of human retinal cone cells. While it is difficult to assign crisp classification values to measurands based on complex overlapping sensory signals, fuzzy logic offers a possibility to mathematically model such systems. Current work goes into the direction of mixed heavy metal solutions and the combination of fuzzy logic with heavy metal-sensitive, silicon-based chemical sensors for training scenarios of arbitrary sensor/probe combinations in terms of an electronic tongue. Heavy metals play an important role in environmental analysis. As trace elements as well as water impurities released from industrial processes they occur in the environment. In this work, the development of a new fuzzy logic method based on potentiometric measurements performed with three different miniaturised chalcogenide glass sensors in different heavy metal solutions will be presented. The critical validation of the developed fuzzy logic program will be demonstrated by means of measurements in unknown single- and multi-component heavy metal solutions. Limitations of this program and a comparison between calculated and expected values in terms of analyte composition and heavy metal ion concentration will be shown and discussed." @default.
- W2055173372 created "2016-06-24" @default.
- W2055173372 creator A5012659726 @default.
- W2055173372 creator A5023099021 @default.
- W2055173372 creator A5048707198 @default.
- W2055173372 creator A5054517846 @default.
- W2055173372 creator A5068527478 @default.
- W2055173372 creator A5071447878 @default.
- W2055173372 creator A5080167142 @default.
- W2055173372 creator A5080248039 @default.
- W2055173372 creator A5081100421 @default.
- W2055173372 date "2009-10-01" @default.
- W2055173372 modified "2023-10-14" @default.
- W2055173372 title "Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors" @default.
- W2055173372 cites W1964602097 @default.
- W2055173372 cites W1969534595 @default.
- W2055173372 cites W1973039808 @default.
- W2055173372 cites W1978315200 @default.
- W2055173372 cites W1983283629 @default.
- W2055173372 cites W1992478558 @default.
- W2055173372 cites W1992537635 @default.
- W2055173372 cites W1992995726 @default.
- W2055173372 cites W1994778290 @default.
- W2055173372 cites W2025648578 @default.
- W2055173372 cites W2029958967 @default.
- W2055173372 cites W2034565049 @default.
- W2055173372 cites W2037697298 @default.
- W2055173372 cites W2038387056 @default.
- W2055173372 cites W2039139441 @default.
- W2055173372 cites W2042534478 @default.
- W2055173372 cites W2049311480 @default.
- W2055173372 cites W2057199866 @default.
- W2055173372 cites W2060915781 @default.
- W2055173372 cites W2061461875 @default.
- W2055173372 cites W2075159062 @default.
- W2055173372 cites W2078556181 @default.
- W2055173372 cites W2092873911 @default.
- W2055173372 cites W2115173108 @default.
- W2055173372 cites W2156060469 @default.
- W2055173372 cites W2169815748 @default.
- W2055173372 cites W4211007335 @default.
- W2055173372 cites W4253015120 @default.
- W2055173372 doi "https://doi.org/10.1016/j.electacta.2009.03.035" @default.
- W2055173372 hasPublicationYear "2009" @default.
- W2055173372 type Work @default.
- W2055173372 sameAs 2055173372 @default.
- W2055173372 citedByCount "20" @default.
- W2055173372 countsByYear W20551733722012 @default.
- W2055173372 countsByYear W20551733722013 @default.
- W2055173372 countsByYear W20551733722014 @default.
- W2055173372 countsByYear W20551733722015 @default.
- W2055173372 countsByYear W20551733722016 @default.
- W2055173372 countsByYear W20551733722018 @default.
- W2055173372 countsByYear W20551733722019 @default.
- W2055173372 countsByYear W20551733722023 @default.
- W2055173372 crossrefType "journal-article" @default.
- W2055173372 hasAuthorship W2055173372A5012659726 @default.
- W2055173372 hasAuthorship W2055173372A5023099021 @default.
- W2055173372 hasAuthorship W2055173372A5048707198 @default.
- W2055173372 hasAuthorship W2055173372A5054517846 @default.
- W2055173372 hasAuthorship W2055173372A5068527478 @default.
- W2055173372 hasAuthorship W2055173372A5071447878 @default.
- W2055173372 hasAuthorship W2055173372A5080167142 @default.
- W2055173372 hasAuthorship W2055173372A5080248039 @default.
- W2055173372 hasAuthorship W2055173372A5081100421 @default.
- W2055173372 hasConcept C153180895 @default.
- W2055173372 hasConcept C154945302 @default.
- W2055173372 hasConcept C171250308 @default.
- W2055173372 hasConcept C185592680 @default.
- W2055173372 hasConcept C192562407 @default.
- W2055173372 hasConcept C41008148 @default.
- W2055173372 hasConcept C58166 @default.
- W2055173372 hasConceptScore W2055173372C153180895 @default.
- W2055173372 hasConceptScore W2055173372C154945302 @default.
- W2055173372 hasConceptScore W2055173372C171250308 @default.
- W2055173372 hasConceptScore W2055173372C185592680 @default.
- W2055173372 hasConceptScore W2055173372C192562407 @default.
- W2055173372 hasConceptScore W2055173372C41008148 @default.
- W2055173372 hasConceptScore W2055173372C58166 @default.
- W2055173372 hasIssue "25" @default.
- W2055173372 hasLocation W20551733721 @default.
- W2055173372 hasOpenAccess W2055173372 @default.
- W2055173372 hasPrimaryLocation W20551733721 @default.
- W2055173372 hasRelatedWork W1978450727 @default.
- W2055173372 hasRelatedWork W2033914206 @default.
- W2055173372 hasRelatedWork W2146076056 @default.
- W2055173372 hasRelatedWork W2163831990 @default.
- W2055173372 hasRelatedWork W2378160586 @default.
- W2055173372 hasRelatedWork W2748952813 @default.
- W2055173372 hasRelatedWork W2899084033 @default.
- W2055173372 hasRelatedWork W3003836766 @default.
- W2055173372 hasRelatedWork W3107474891 @default.
- W2055173372 hasRelatedWork W4244943737 @default.
- W2055173372 hasVolume "54" @default.
- W2055173372 isParatext "false" @default.
- W2055173372 isRetracted "false" @default.
- W2055173372 magId "2055173372" @default.
- W2055173372 workType "article" @default.