Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055234834> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2055234834 endingPage "1742" @default.
- W2055234834 startingPage "1728" @default.
- W2055234834 abstract "Feature extraction based on ridge regression (FERR) is proposed in this article. In FERR, a feature vector is defined in each spectral band using the mean of all classes in that dimension. Then, it is modelled using a linear combination of its farthest neighbours from among other defined feature vectors. The representation coefficients obtained by solving the ridge regression model compose the projection matrix for feature extraction. FERR can extract each desired number of features while the other methods such as linear discriminant analysis (LDA) and generalized discriminant analysis (GDA) have limitations in the number of extracted features. Experimental results on four popular real hyperspectral images show that the efficiency of FERR is superior to those of other supervised feature extraction methods in small sample-size situations. For example, for the Indian Pines dataset, the comparison between the highest average classification accuracies achieved by different feature extraction methods using a support vector machine (SVM) classifier and 16 training samples per class shows that FERR is 7% more accurate than nonparametric weighted feature extraction and is also 9% better than GDA. LDA, having the singularity problem in the small sample-size situations, has 40% less accuracy than FERR. The experiments show that generally the performance of FERR using the SVM classifier is better than when using the maximum likelihood classifier." @default.
- W2055234834 created "2016-06-24" @default.
- W2055234834 creator A5040092306 @default.
- W2055234834 creator A5041239744 @default.
- W2055234834 date "2015-03-19" @default.
- W2055234834 modified "2023-09-23" @default.
- W2055234834 title "Ridge regression-based feature extraction for hyperspectral data" @default.
- W2055234834 cites W1980335005 @default.
- W2055234834 cites W1988310334 @default.
- W2055234834 cites W1991382078 @default.
- W2055234834 cites W2010797000 @default.
- W2055234834 cites W2013793344 @default.
- W2055234834 cites W2033213769 @default.
- W2055234834 cites W2033515137 @default.
- W2055234834 cites W2041657594 @default.
- W2055234834 cites W2053154970 @default.
- W2055234834 cites W2079683903 @default.
- W2055234834 cites W2083551933 @default.
- W2055234834 cites W2118796925 @default.
- W2055234834 cites W2136944379 @default.
- W2055234834 cites W2139987077 @default.
- W2055234834 cites W2157039825 @default.
- W2055234834 cites W2161943337 @default.
- W2055234834 cites W2168481151 @default.
- W2055234834 cites W2186382263 @default.
- W2055234834 cites W45832856 @default.
- W2055234834 doi "https://doi.org/10.1080/01431161.2015.1024894" @default.
- W2055234834 hasPublicationYear "2015" @default.
- W2055234834 type Work @default.
- W2055234834 sameAs 2055234834 @default.
- W2055234834 citedByCount "23" @default.
- W2055234834 countsByYear W20552348342015 @default.
- W2055234834 countsByYear W20552348342016 @default.
- W2055234834 countsByYear W20552348342017 @default.
- W2055234834 countsByYear W20552348342018 @default.
- W2055234834 countsByYear W20552348342019 @default.
- W2055234834 countsByYear W20552348342020 @default.
- W2055234834 countsByYear W20552348342021 @default.
- W2055234834 countsByYear W20552348342022 @default.
- W2055234834 countsByYear W20552348342023 @default.
- W2055234834 crossrefType "journal-article" @default.
- W2055234834 hasAuthorship W2055234834A5040092306 @default.
- W2055234834 hasAuthorship W2055234834A5041239744 @default.
- W2055234834 hasConcept C12267149 @default.
- W2055234834 hasConcept C153180895 @default.
- W2055234834 hasConcept C154945302 @default.
- W2055234834 hasConcept C159078339 @default.
- W2055234834 hasConcept C27438332 @default.
- W2055234834 hasConcept C33923547 @default.
- W2055234834 hasConcept C41008148 @default.
- W2055234834 hasConcept C52622490 @default.
- W2055234834 hasConcept C69738355 @default.
- W2055234834 hasConcept C70518039 @default.
- W2055234834 hasConcept C78397625 @default.
- W2055234834 hasConcept C83665646 @default.
- W2055234834 hasConcept C95623464 @default.
- W2055234834 hasConceptScore W2055234834C12267149 @default.
- W2055234834 hasConceptScore W2055234834C153180895 @default.
- W2055234834 hasConceptScore W2055234834C154945302 @default.
- W2055234834 hasConceptScore W2055234834C159078339 @default.
- W2055234834 hasConceptScore W2055234834C27438332 @default.
- W2055234834 hasConceptScore W2055234834C33923547 @default.
- W2055234834 hasConceptScore W2055234834C41008148 @default.
- W2055234834 hasConceptScore W2055234834C52622490 @default.
- W2055234834 hasConceptScore W2055234834C69738355 @default.
- W2055234834 hasConceptScore W2055234834C70518039 @default.
- W2055234834 hasConceptScore W2055234834C78397625 @default.
- W2055234834 hasConceptScore W2055234834C83665646 @default.
- W2055234834 hasConceptScore W2055234834C95623464 @default.
- W2055234834 hasIssue "6" @default.
- W2055234834 hasLocation W20552348341 @default.
- W2055234834 hasOpenAccess W2055234834 @default.
- W2055234834 hasPrimaryLocation W20552348341 @default.
- W2055234834 hasRelatedWork W1585144779 @default.
- W2055234834 hasRelatedWork W1756315871 @default.
- W2055234834 hasRelatedWork W1980511770 @default.
- W2055234834 hasRelatedWork W2063592899 @default.
- W2055234834 hasRelatedWork W2146076056 @default.
- W2055234834 hasRelatedWork W2151015462 @default.
- W2055234834 hasRelatedWork W2169311637 @default.
- W2055234834 hasRelatedWork W2373052636 @default.
- W2055234834 hasRelatedWork W3154145980 @default.
- W2055234834 hasRelatedWork W4292879257 @default.
- W2055234834 hasVolume "36" @default.
- W2055234834 isParatext "false" @default.
- W2055234834 isRetracted "false" @default.
- W2055234834 magId "2055234834" @default.
- W2055234834 workType "article" @default.