Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055289323> ?p ?o ?g. }
- W2055289323 endingPage "1130" @default.
- W2055289323 startingPage "1119" @default.
- W2055289323 abstract "Trimmed samples are widely employed in several areas of statistical practice, especially when some sample values at either or both extremes might have been contaminated. The problem of estimating the inequality and precision parameters of a Pareto distribution based on a trimmed sample and prior information is considered. From an inferential viewpoint, the problem of finding the highest posterior density (HPD) estimates of the Pareto parameters is discussed. The existence and uniqueness of the HPD estimates are established under mild conditions; explicit and accurate lower and upper bounds are also provided. Adopting a decision-theoretic perspective, several Bayesian estimators for standard loss functions are presented. In addition, two-sided and HPD credibility intervals for each Pareto parameter and joint HPD credibility regions for both parameters are derived, which have the corresponding frequentist confidence level in the noninformative case. Finally, an illustrative example concerning annual wage data is included." @default.
- W2055289323 created "2016-06-24" @default.
- W2055289323 creator A5045225985 @default.
- W2055289323 date "2006-11-01" @default.
- W2055289323 modified "2023-09-23" @default.
- W2055289323 title "Bayesian estimation based on trimmed samples from Pareto populations" @default.
- W2055289323 cites W1979857929 @default.
- W2055289323 cites W1980111094 @default.
- W2055289323 cites W1985810212 @default.
- W2055289323 cites W1987574289 @default.
- W2055289323 cites W1988520084 @default.
- W2055289323 cites W1992242800 @default.
- W2055289323 cites W2000151208 @default.
- W2055289323 cites W2005653187 @default.
- W2055289323 cites W2008140376 @default.
- W2055289323 cites W2011257994 @default.
- W2055289323 cites W2019634526 @default.
- W2055289323 cites W2022396285 @default.
- W2055289323 cites W2029949976 @default.
- W2055289323 cites W2036728441 @default.
- W2055289323 cites W2046053928 @default.
- W2055289323 cites W2053349568 @default.
- W2055289323 cites W2053483855 @default.
- W2055289323 cites W2054506865 @default.
- W2055289323 cites W2062398991 @default.
- W2055289323 cites W2069171546 @default.
- W2055289323 cites W2069474899 @default.
- W2055289323 cites W2076665003 @default.
- W2055289323 cites W2076875295 @default.
- W2055289323 cites W2107589230 @default.
- W2055289323 cites W2170197964 @default.
- W2055289323 cites W2332839520 @default.
- W2055289323 cites W2336119681 @default.
- W2055289323 cites W2501225811 @default.
- W2055289323 cites W2796058374 @default.
- W2055289323 cites W2796537448 @default.
- W2055289323 cites W2802481120 @default.
- W2055289323 cites W2905505054 @default.
- W2055289323 cites W2974222084 @default.
- W2055289323 doi "https://doi.org/10.1016/j.csda.2005.11.010" @default.
- W2055289323 hasPublicationYear "2006" @default.
- W2055289323 type Work @default.
- W2055289323 sameAs 2055289323 @default.
- W2055289323 citedByCount "23" @default.
- W2055289323 countsByYear W20552893232012 @default.
- W2055289323 countsByYear W20552893232013 @default.
- W2055289323 countsByYear W20552893232014 @default.
- W2055289323 countsByYear W20552893232015 @default.
- W2055289323 countsByYear W20552893232016 @default.
- W2055289323 countsByYear W20552893232017 @default.
- W2055289323 countsByYear W20552893232018 @default.
- W2055289323 countsByYear W20552893232022 @default.
- W2055289323 countsByYear W20552893232023 @default.
- W2055289323 crossrefType "journal-article" @default.
- W2055289323 hasAuthorship W2055289323A5045225985 @default.
- W2055289323 hasConcept C105795698 @default.
- W2055289323 hasConcept C107673813 @default.
- W2055289323 hasConcept C129848803 @default.
- W2055289323 hasConcept C133514767 @default.
- W2055289323 hasConcept C137635306 @default.
- W2055289323 hasConcept C147581598 @default.
- W2055289323 hasConcept C149782125 @default.
- W2055289323 hasConcept C160234255 @default.
- W2055289323 hasConcept C162376815 @default.
- W2055289323 hasConcept C17744445 @default.
- W2055289323 hasConcept C185429906 @default.
- W2055289323 hasConcept C190373308 @default.
- W2055289323 hasConcept C199539241 @default.
- W2055289323 hasConcept C2780224610 @default.
- W2055289323 hasConcept C33923547 @default.
- W2055289323 hasConcept C38814450 @default.
- W2055289323 hasConcept C44211194 @default.
- W2055289323 hasConceptScore W2055289323C105795698 @default.
- W2055289323 hasConceptScore W2055289323C107673813 @default.
- W2055289323 hasConceptScore W2055289323C129848803 @default.
- W2055289323 hasConceptScore W2055289323C133514767 @default.
- W2055289323 hasConceptScore W2055289323C137635306 @default.
- W2055289323 hasConceptScore W2055289323C147581598 @default.
- W2055289323 hasConceptScore W2055289323C149782125 @default.
- W2055289323 hasConceptScore W2055289323C160234255 @default.
- W2055289323 hasConceptScore W2055289323C162376815 @default.
- W2055289323 hasConceptScore W2055289323C17744445 @default.
- W2055289323 hasConceptScore W2055289323C185429906 @default.
- W2055289323 hasConceptScore W2055289323C190373308 @default.
- W2055289323 hasConceptScore W2055289323C199539241 @default.
- W2055289323 hasConceptScore W2055289323C2780224610 @default.
- W2055289323 hasConceptScore W2055289323C33923547 @default.
- W2055289323 hasConceptScore W2055289323C38814450 @default.
- W2055289323 hasConceptScore W2055289323C44211194 @default.
- W2055289323 hasIssue "2" @default.
- W2055289323 hasLocation W20552893231 @default.
- W2055289323 hasOpenAccess W2055289323 @default.
- W2055289323 hasPrimaryLocation W20552893231 @default.
- W2055289323 hasRelatedWork W1903097126 @default.
- W2055289323 hasRelatedWork W2009947662 @default.
- W2055289323 hasRelatedWork W2074517155 @default.
- W2055289323 hasRelatedWork W2079907611 @default.
- W2055289323 hasRelatedWork W3101895152 @default.