Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055296721> ?p ?o ?g. }
- W2055296721 endingPage "3261" @default.
- W2055296721 startingPage "3254" @default.
- W2055296721 abstract "Tat, the transactivator protein of human immunodeficiency virus-1, has the unusual capacity of being internalized by cells when present in the extracellular milieu. This property can be exploited for the cellular delivery of heterologous proteins fused to Tat both in cell culture and in living animals. Here we provide genetic and biochemical evidence that cell membrane heparan sulfate (HS) proteoglycans act as receptors for extracellular Tat uptake. Cells genetically defective in the biosynthesis of fully sulfated HS are selectively impaired in the internalization of recombinant Tat fused to the green fluorescent protein, as evaluated by both flow cytometry and functional assays. In wild type cells, Tat uptake is competitively inhibited by soluble heparin and by treatment with glycosaminoglycan lyases specifically degrading HS chains. Cell surface HS proteoglycans also mediate physiological internalization of Tat green fluorescent protein released from neighboring producing cells. In contrast to extracellular Tat uptake, both wild type cells and cells genetically impaired in proteoglycan synthesis are equally proficient in the extracellular release of Tat, thus indicating that proteoglycans are not required for this process. The ubiquitous distribution of HS proteoglycans is consistent with the efficient intracellular delivery of heterologous proteins fused with Tat to different mammalian cell types. Tat, the transactivator protein of human immunodeficiency virus-1, has the unusual capacity of being internalized by cells when present in the extracellular milieu. This property can be exploited for the cellular delivery of heterologous proteins fused to Tat both in cell culture and in living animals. Here we provide genetic and biochemical evidence that cell membrane heparan sulfate (HS) proteoglycans act as receptors for extracellular Tat uptake. Cells genetically defective in the biosynthesis of fully sulfated HS are selectively impaired in the internalization of recombinant Tat fused to the green fluorescent protein, as evaluated by both flow cytometry and functional assays. In wild type cells, Tat uptake is competitively inhibited by soluble heparin and by treatment with glycosaminoglycan lyases specifically degrading HS chains. Cell surface HS proteoglycans also mediate physiological internalization of Tat green fluorescent protein released from neighboring producing cells. In contrast to extracellular Tat uptake, both wild type cells and cells genetically impaired in proteoglycan synthesis are equally proficient in the extracellular release of Tat, thus indicating that proteoglycans are not required for this process. The ubiquitous distribution of HS proteoglycans is consistent with the efficient intracellular delivery of heterologous proteins fused with Tat to different mammalian cell types. human immunodeficiency virus-1 long terminal repeat heparan sulfate Chinese hamster ovary glycosaminoglycan chloramphenicol transferase green fluorescent protein fluorescence-activated cell sorter phosphate-buffered saline glutathione S-transferase The Tat protein of human immunodeficiency virus-1 (HIV-1)1 is a powerful transcriptional activator of the integrated viral genome. The protein binds to a highly structured RNA element located at the 5′ end of all viral transcripts (1Berkhout B. Silverman R.H. Jeang K.T. Cell. 1989; 59: 273-282Abstract Full Text PDF PubMed Scopus (513) Google Scholar), and from there it increases the rates of both transcriptional initiation and elongation from the long terminal repeat (LTR) promoter. These two functions are mediated by the interaction of Tat with nuclear proteins possessing chromatin remodeling activity (2Benkirane M. Chun R.F. Xiao H. Ogryzko V.V. Howard B.H. Nakatani Y. Jeang K.T. J. Biol. Chem. 1998; 273: 24898-24905Abstract Full Text Full Text PDF PubMed Scopus (253) Google Scholar, 3Marzio G. Tyagi M. Gutierrez M.I. Giacca M. Proc. Natl. Acad. Sci. U. S. A. 1998; 23: 13519-13524Crossref Scopus (266) Google Scholar, 4Hottiger M.O. Nabel G.J. J. Virol. 1998; 72: 8252-8256Crossref PubMed Google Scholar) and with cellular kinases phosphorylating the C-terminal domain of RNA polymerase II (5Wei P. Garber M.E. Fang S.-M. Fisher W.H. Jones K.A. Cell. 1998; 92: 451-462Abstract Full Text Full Text PDF PubMed Scopus (1055) Google Scholar, 6Parada C.A. Roeder R.G. Nature. 1996; 384: 375-378Crossref PubMed Scopus (237) Google Scholar, 7Gold M.O. Yang X. Herrmann C.H. Rice A.P. J. Virol. 1998; 72: 4448-4453Crossref PubMed Google Scholar, 8Cujec T.P. Okamoto H. Fujinaga K. Meyer J. Chamberlin H. Morgan D.O. Peterlin B.M. Genes Dev. 1997; 11: 2645-2657Crossref PubMed Scopus (180) Google Scholar, 9Zhu Y. Pe'ery T. Peng J. Ramanathan Y. Marshall N. Marshall T. Amendt B. Mathews M.B. Price D.H. Genes Dev. 1997; 11: 2622-2632Crossref PubMed Scopus (613) Google Scholar), respectively. In addition to these transcriptional functions at the HIV promoter, the Tat polypeptide exerts pleiotropic biological activities when present in the extracellular compartment. Extracellular Tat promotes the production of cytokines (10Lotz M. Clark-Lewis I. Ganu V. J. Cell Biol. 1994; 124: 365-371Crossref PubMed Scopus (77) Google Scholar, 11Zauli G. Davis B.R. Re M.C. Visani G. Furlini G. La Placa M. Blood. 1992; 80: 3036-3043Crossref PubMed Google Scholar, 12Westendorp M.O. Li-Weber M. Frank R.W. Krammer P.H. J. Virol. 1994; 68: 4177-4185Crossref PubMed Google Scholar, 13Scala G. Ruocco M.R. Ambrosino C. Mallardo M. Giordano V. Baldassarre F. Dragonetti E. Quinto I. Venuta S. J. Exp. Med. 1994; 179: 961-971Crossref PubMed Scopus (233) Google Scholar, 14Opalenik S.R. Shin J.T. Wehby J.N. Mahesh V.K. Thompson J.A. J. Biol. Chem. 1995; 270: 17457-17467Abstract Full Text Full Text PDF PubMed Scopus (54) Google Scholar, 15Nabell L.M. Raja R.H. Sayeski P.P. Paterson A.J. Kudlow J.E. Cell Growth Differ. 1994; 5: 87-93PubMed Google Scholar) and cytokine receptors (16Puri R.K. Aggarwal B.B. Cancer Res. 1992; 52: 3787-3790PubMed Google Scholar, 17Purvis S.F. Georges D.L. Williams T.M. Lederman M.M. Cell.Immunol. 1992; 144: 32-42Crossref PubMed Scopus (67) Google Scholar, 18Pocsik E. Higuchi M. Aggarwal B.B. Lymphokine Cytokine Res. 1992; 11: 317-325PubMed Google Scholar); modulates the survival, proliferation, and migration of different cell types (19Ensoli B. Buonaguro L. Barillari G. Fiorelli V. Gendelman R. Morgan R.A. Wingfield P. Gallo R.C. J. Virol. 1993; 67: 277-287Crossref PubMed Google Scholar, 20Zauli G. Gibellini D. Milani D. Mazzoni M. Borgatti P. La Placa M. Capitani S. Cancer Res. 1993; 53: 4481-4485PubMed Google Scholar, 21Ensoli B. Barillari G. Salahuddin S.Z. Gallo R.C. Wong-Staal F. Nature. 1990; 345: 84-87Crossref PubMed Scopus (803) Google Scholar, 22Lafrenie R.M. Wahl L.M. Epstein J.S. Yamada K.M. Dhawan S. J. Immunol. 1997; 159: 4077-4083PubMed Google Scholar, 23Westendorp M.O. Frank R. Ochsenbauer C. Stricker K. Dhein J. Walczak H. Debatin K.M. Krammer P.H. Nature. 1995; 375: 497-500Crossref PubMed Scopus (916) Google Scholar, 24Li C.J. Friedman D.J. Wang C. Metelev V. Pardee A.B. Science. 1995; 268: 429-431Crossref PubMed Scopus (549) Google Scholar); exerts angiogenic activity in vitro andin vivo (25Albini A. Benelli R. Presta M. Rusnati M. Ziche M. Rubartelli A. Paglialunga G., F, B. Noonan D. Oncogene. 1996; 12: 289-297PubMed Google Scholar, 26Albini A. Barillari G. Benelli R. Gallo R.C. Ensoli B. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4838-4842Crossref PubMed Scopus (203) Google Scholar, 27Corallini A. Campioni D. Rossi C. Albini A. Possati L. Rusnati M. Gazzanelli G. Benelli R. Masiello L. Sparacciari V. Presta M. Mannello F. Fontanini G. Barbanti-Brodano G. AIDS. 1996; 10: 701-710Crossref PubMed Scopus (42) Google Scholar); inhibits antigen-specific lymphocyte proliferation (28Subramanyam M. Gutheil W.G. Bachovchin W.W. Huber B.T. J. Immunol. 1993; 150: 2544-2553PubMed Google Scholar, 29Chirmule N. Than S. Khan S.A. Pahwa S. J. Virol. 1995; 69: 492-498Crossref PubMed Google Scholar, 30Viscidi R.P. Mayur K. Lederman H.M. Frankel A.D. Science. 1989; 246: 1606-1608Crossref PubMed Scopus (319) Google Scholar); and induces neurotoxicity in the central nervous system (31Sabatier J.M. Vives E. Mabrouk K. Benjouad A. Rochat H. Duval A. Hue B. Bahraoui E. J. Virol. 1991; 65: 961-967Crossref PubMed Google Scholar, 32Taylor J.P. Cupp C. Diaz A. Chowdhury M. Khalili K. Jimenez S.A. Amini S. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 9617-9621Crossref PubMed Scopus (90) Google Scholar, 33Philippon V. Vellutini C. Gambarelli D. Harkiss G. Arbuthnott G. Metzger D. Roubin R. Filippi P. Virology. 1994; 205: 519-529Crossref PubMed Scopus (133) Google Scholar, 34Weeks B.S. Lieberman D.M. Johnson B. Roque E. Green M. Loewenstein P. Oldfield E.H. Kleinman H.K. J. Neurosci. Res. 1995; 42: 34-40Crossref PubMed Scopus (68) Google Scholar, 35Hofman F.M. Dohadwala M.M. Wright A.D. Hinton D.R. Walker S.M. J. Neuroimmunol. 1994; 54: 19-28Abstract Full Text PDF PubMed Scopus (92) Google Scholar, 36Nath A. Psooy K. Martin C. Knudsen B. Magnuson D.S. Haughey N. Geiger J.D. J. Virol. 1996; 70: 1475-1480Crossref PubMed Google Scholar). Since a growing body of evidence exists that Tat could be released by producing cells (37Helland D.E. Welles J.L. Caputo A. Haseltine W.A. J. Virol. 1991; 65: 4547-4549Crossref PubMed Google Scholar, 38Thomas C.A. Dobkin J. Weinberger O.K. J. Immunol. 1994; 153: 3831-3839PubMed Google Scholar, 39Chang H.C. Samaniego F. Nair B.C. Buonaguro L. Ensoli B. AIDS. 1997; 11: 1421-1431Crossref PubMed Scopus (393) Google Scholar, 40Re M.C. Furlini G. Vignoli M. Ramazzotti E. Roderigo G. De Rosa V. Zauli G. Lolli S. Capitani S. La Placa M. J. Acquired Immune Deficiency Syndrome. 1995; 10: 408-416Crossref Scopus (116) Google Scholar), it is likely that some of the above-mentioned effects of extracellular Tat could have important implications for the pathogenesis of HIV disease in an autocrine or paracrine fashion. Besides its interaction with cell surface receptors and the consequent activation of intracellular signal transduction pathways (41Albini A. Soldi R. Giunciuglio D. Giraudo E. Benelli R. Primo L. Noonan D. Salio M. Camussi G. Rockl W. Bussolino F. Nat. Med. 1996; 2: 1371-1375Crossref PubMed Scopus (349) Google Scholar, 42Albini A. Ferrini S. Benelli R. Sforzini S. Giunciuglio D. Aluigi M.G. Proudfoot A.E.I. Alouani S. Wells T.N.C. Mariani G. Rabin R.L. Farber J.M. Noonan D.M. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 13153-13158Crossref PubMed Scopus (245) Google Scholar, 43Mitola S. Sozzani S. Luini W. Primo L. Borsatti A. Weich H. Bussolino F. Blood. 1997; 90: 1365-1372Crossref PubMed Google Scholar), most of the activities of extracellular Tat are mediated by its unique property of being rapidly internalized by a variety of cell types, as originally shown more than 10 years ago (44Green M. Loewenstein P.M. Cell. 1988; 55: 1179-1188Abstract Full Text PDF PubMed Scopus (1291) Google Scholar, 45Frankel A.D. Pabo C.O. Cell. 1988; 55: 1189-1193Abstract Full Text PDF PubMed Scopus (2353) Google Scholar, 46Mann D.A. Frankel A.D. EMBO J. 1991; 10: 1733-1739Crossref PubMed Scopus (451) Google Scholar). One of the consequences of Tat internalization is the activation of cellular transcription factor NF-κB; several of the pleiotropic functions of extracellular Tat could be mediated by this pathway (47Demarchi F. Gutierrez M.I. Giacca M. J. Virol. 1999; 73: 7080-7086Crossref PubMed Google Scholar, 48Demarchi F. d'Adda di Fagagna F. Falaschi A. Giacca M. J. Virol. 1996; 70: 4427-4437Crossref PubMed Google Scholar, 49Biswas D.K. Salas T.R. Wang F. Ahlers C.M. Dezube B.J. Pardee A.B. J. Virol. 1995; 69: 7437-7444Crossref PubMed Google Scholar, 50Westendorp M.O. Shatrov V.A. Schulze-Osthoff K. Frank R. Kraft M. Los M. Krammer P.H. Droge W. Lehmann V. EMBO J. 1995; 14: 546-554Crossref PubMed Scopus (367) Google Scholar). The uptake, internalization, and nuclear translocation of extracellular Tat can also be exploited as a biotechnological tool for intracellular protein delivery. Chemical cross-linking of Tat peptides with heterologous proteins (51Fawell S. Seery J. Daikh Y. Moore C. Chen L.L. Pepinsky B. Barsoum J. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 664-668Crossref PubMed Scopus (1107) Google Scholar) or, more efficiently, production of recombinant proteins containing the protein transduction domain of Tat (52Nagahara H. Vocero-Akbani A.M. Snyder E.L. Ho A. Latham D.G. Lissy N.A. Becker-Hapak M. Ezhevsky S.A. Dowdy S.F. Nat. Med. 1998; 4: 1449-1452Crossref PubMed Scopus (887) Google Scholar, 53Schwarze S.R. Ho A. Vocero-Akbani A. Dowdy S.F. Science. 1999; 285: 1569-1572Crossref PubMed Scopus (2210) Google Scholar) facilitate the intracellular delivery of these proteins. In particular, it has been recently reported that the intraperitoneal injection of the 120-kDa β-galactosidase protein fused to 11 amino acids encompassing the arginine-rich region of Tat results in delivery of the fusion protein to virtually all tissues in mice (53Schwarze S.R. Ho A. Vocero-Akbani A. Dowdy S.F. Science. 1999; 285: 1569-1572Crossref PubMed Scopus (2210) Google Scholar). Despite the large body of evidence available about the functions of extracellular Tat and its recent use, a biotechnological vector for protein transduction, the cellular mechanisms for Tat uptake and internalization, are still largely unexplored. Inspired by the observation that Tat can enter a variety of different cell types bothin vitro and in vivo and by the possibility of modulating several of the biological properties of extracellular Tat by soluble heparin (54Rusnati M. Coltrini D. Oreste P. Zoppetti G. Albini A. Noonan D. d'Adda di Fagagna F. Giacca M. Presta M. J. Biol. Chem. 1997; 272: 11313-11320Abstract Full Text Full Text PDF PubMed Scopus (176) Google Scholar, 55Rusnati M. Tulipano G. Urbinati C. Tanghetti E. Giuliani R. Giacca M. Ciomei M. Corallini A. Presta M. J. Biol. Chem. 1998; 273: 16027-16037Abstract Full Text Full Text PDF PubMed Scopus (112) Google Scholar, 56Rusnati M. Tulipano G. Spillmann D. Tanghetti E. Oreste P. Zoppetti G. Giacca M. Presta M. J. Biol. Chem. 1999; 274: 28198-28205Abstract Full Text Full Text PDF PubMed Scopus (113) Google Scholar), we started investigating the role of cell surface proteoglycans in the process of Tat translocation through the plasma membrane. Here we provide genetic and biochemical evidences that cell membrane heparan sulfate (HS) proteoglycans are the receptors for extracellular Tat internalization. The wild type CHO K1 and CHO K1 mutants deficient in proteoglycan biosynthesis (57Rostand K.S. Esko J.D. Infect. Immun. 1997; 65: 1-8Crossref PubMed Google Scholar) were obtained from the American Type Culture Collection (Manassas, VA). The pgs A-745 cell line does not produce detectable levels of proteoglycans since it lacks xylosyltransferase, an enzyme necessary for the initiation of glycosaminoglycan (GAG) synthesis. Mutant pgs B-618 has a defect in the galactosyltransferase-I enzyme gene and produces about 15% the amount of proteoglycans synthesized by wild type cells. Cell line pgs E-606 is partially deficient in HS N-sulfotransferase and produces an undersulfated form of HS proteoglycan. The cell line pgs D-677 has a single mutation that affects bothN-acetylglucosaminyltransferase and glucuronosyltransferase activities, which are necessary for the polymerization of HS disaccharide chains and does not synthesize any HS proteoglycan. This mutant cell line also produces approximately three times more chondroitin sulfate than wild type cells. Finally, mutant cell line pgs C-605 has a defect in a saturable, 4-acetamido-4-isothiocyanostilbene-2,2′-disulfonic acid-sensitive transport system required for sulfate uptake. Despite a dramatic reduction in 35SO4 incorporation, the mutant synthesizes sulfated heparan and chondroitin chains by using the inorganic sulfate produced from oxidative metabolism of cysteine and methionine (58Esko J.D. Elgavish A. Prasthofer T. Taylor W.H. Weinke J.L. J. Biol. Chem. 1986; 261 (15333): 15725Abstract Full Text PDF PubMed Google Scholar). HL3T1 cells (a HeLa derivative containing an integrated LTR-CAT cassette) were a kind gift of B. Felber. Cell lines constitutively expressing Tat-green fluorescent protein (GFP) were obtained by selection for neomycin-resistant clones with 500 μg/ml G418 (Life Technologies, Inc.) after transfection of pCDNA3-Tat-GFP; single clones were collected and propagated. Recombinant glutathioneS-transferase (GST)-Tat containing the 86-amino acid Tat protein of HIV-1 clone HXB2 fused to glutathioneS-transferase and its mutated derivative containing alanine substitutions at arginines 49, 52, 53, 55, 56, and 57, GST-Tat R (49Biswas D.K. Salas T.R. Wang F. Ahlers C.M. Dezube B.J. Pardee A.B. J. Virol. 1995; 69: 7437-7444Crossref PubMed Google Scholar, 50Westendorp M.O. Shatrov V.A. Schulze-Osthoff K. Frank R. Kraft M. Los M. Krammer P.H. Droge W. Lehmann V. EMBO J. 1995; 14: 546-554Crossref PubMed Scopus (367) Google Scholar, 51Fawell S. Seery J. Daikh Y. Moore C. Chen L.L. Pepinsky B. Barsoum J. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 664-668Crossref PubMed Scopus (1107) Google Scholar, 52Nagahara H. Vocero-Akbani A.M. Snyder E.L. Ho A. Latham D.G. Lissy N.A. Becker-Hapak M. Ezhevsky S.A. Dowdy S.F. Nat. Med. 1998; 4: 1449-1452Crossref PubMed Scopus (887) Google Scholar, 53Schwarze S.R. Ho A. Vocero-Akbani A. Dowdy S.F. Science. 1999; 285: 1569-1572Crossref PubMed Scopus (2210) Google Scholar, 54Rusnati M. Coltrini D. Oreste P. Zoppetti G. Albini A. Noonan D. d'Adda di Fagagna F. Giacca M. Presta M. J. Biol. Chem. 1997; 272: 11313-11320Abstract Full Text Full Text PDF PubMed Scopus (176) Google Scholar, 55Rusnati M. Tulipano G. Urbinati C. Tanghetti E. Giuliani R. Giacca M. Ciomei M. Corallini A. Presta M. J. Biol. Chem. 1998; 273: 16027-16037Abstract Full Text Full Text PDF PubMed Scopus (112) Google Scholar, 56Rusnati M. Tulipano G. Spillmann D. Tanghetti E. Oreste P. Zoppetti G. Giacca M. Presta M. J. Biol. Chem. 1999; 274: 28198-28205Abstract Full Text Full Text PDF PubMed Scopus (113) Google Scholar, 57Rostand K.S. Esko J.D. Infect. Immun. 1997; 65: 1-8Crossref PubMed Google Scholar)A, were produced and purified by glutathione-agarose affinity chromatography as already described (3Marzio G. Tyagi M. Gutierrez M.I. Giacca M. Proc. Natl. Acad. Sci. U. S. A. 1998; 23: 13519-13524Crossref Scopus (266) Google Scholar, 48Demarchi F. d'Adda di Fagagna F. Falaschi A. Giacca M. J. Virol. 1996; 70: 4427-4437Crossref PubMed Google Scholar). The plasmid expressing GST-Tat-GFP was obtained by cloning a polymerase chain reaction-amplified fragment into the Bam HI andEco RI sites of the commercial vector pGEX2T (Amersham Pharmacia Biotech). The fragment was obtained by the separate amplifications of HXB2 Tat using primers 5′-GTGGATCCATGGAGCCAGTAGATCCTA-3′ and 5′-CCCTTGCTCACCATAAGCTTTTCCTTCGGGCC-3′ and of enhanced green fluorescent protein (GFP) using primers 5′-GGCCCGAAGGAAAAGCTTATGGTGAGCAAGGG-3′ and 5′-GGCGAATTCTCTAGAGTCGCGGCCGCTTTA-3′. Templates for amplification were plasmid pGEX2T-Tat (3Marzio G. Tyagi M. Gutierrez M.I. Giacca M. Proc. Natl. Acad. Sci. U. S. A. 1998; 23: 13519-13524Crossref Scopus (266) Google Scholar) and pEGFP-N1 (CLONTECH, Palo Alto CA) respectively. The two amplification products contain complementary sequences at the 3′ and 5′ regions of the coding strands of Tat and GFP, respectively. They were gel purified, mixed, annealed, and amplified with the external primers to obtain a single amplification products, which contains Bam HI andEco RI sites at the extremities. To study the kinetics of recombinant Tat internalization, HL3T1 cells were seeded in 24-well or 10-cm-diameter dishes at the density of 1–2 × 104cells/cm2 in Dulbecco's modified Eagle's medium containing 10% fetal calf serum. After 24 h, cell cultures were washed twice and incubated for an additional 24 h in fresh medium containing 10% fetal calf serum, 100 μm chloroquine, and recombinant Tat protein. Incubation in the presence of chloroquine favors Tat uptake by modifying the pH of endolysosomal vesicles and preventing protein degradation (46Mann D.A. Frankel A.D. EMBO J. 1991; 10: 1733-1739Crossref PubMed Scopus (451) Google Scholar). After 24 h, the medium was changed to Dulbecco's modified Eagle's medium, 10% fetal calf serum, and cells were incubated for an additional 24 h. At the end of incubation, cells were extracted, and the amount of CAT protein present in the cell extracts was determined by the CAT enzyme-linked immunosorbent assay kit (Roche Molecular Biochemicals) according to the manufacturer's instructions. Alternatively, cells were collected and analyzed by FACS (see below). Recombinant GST-Tat was labeled with 125I (17 Ci/mg, PerkinElmer Life Sciences) using iodogen (Pierce) to a specific radioactivity of 400 cpm/fmol as described previously (55Rusnati M. Tulipano G. Urbinati C. Tanghetti E. Giuliani R. Giacca M. Ciomei M. Corallini A. Presta M. J. Biol. Chem. 1998; 273: 16027-16037Abstract Full Text Full Text PDF PubMed Scopus (112) Google Scholar). HL3T1 cells were seeded in 24-well dishes at the density of 45,000 cells/cm2 in Dulbecco's modified Eagle's medium containing 10% fetal calf serum. After 24 h, cell cultures were washed twice with Tris-buffered saline and incubated for 16 h at 37 °C in binding medium (serum-free medium containing 0.15% gelatin and 20 mmHepes buffer, pH 7.5) with the addition of 20 ng/ml [125I]GST-Tat plus 200 ng/ml unlabeled GST-Tat as a carrier and in the presence of 100 μm chloroquine. After incubation, medium was removed, cells were washed three times with cold Tris-buffered saline and lysed by incubation with 0.5% Triton X-100 in 0.1 m sodium phosphate, pH 8.1. Radioactivity of the cell lysates was measured, and nonspecific binding, determined in the presence of a 200-fold molar excess of unlabeled GST-Tat (4 μg/ml), was subtracted. For immunocytochemistry, HL3T1 cells were grown to about 60% confluency on glass coverslips. The GST-Tat protein (1 μg/ml) was added to the cell culture medium in the presence of 100 μm chloroquine. After different time intervals, cells were washed 6 times with PBS and fixed with a cold acetone:methanol mixture (50:50) for 15 min. Cells were then washed 3 times with PBS containing 0.2% Triton X-100 (PBS-Triton X-100) and then 5 times with PBS for 5 min each. Cells were then incubated with an anti-Tat monoclonal antibody (ADP352/NT3, obtained from the Medical Research Council repository for AIDS research) for 1 h, washed 5 times with warm PBS (25 to 28 °C), and incubated with rhodamine-conjugated secondary antibody (Sigma) for 30 min. Cells were then washed three times with warm PBS/Triton X-100 and with warm PBS for 5 min each time. For each immunostaining, one coverslip was incubated in secondary antibody alone as a negative control for background immunofluorescence. Nuclei were counterstained with Hoechst 33342 (10 μg/ml in PBS) for 5 min, and coverslips were washed three times with PBS and mounted on glass slides. Slides were observed using Zeiss Axiophot fluorescence microscope. To analyze GFP-Tat internalization by cell cytometry, cells were washed four times with PBS, trypsinized, again washed with PBS, and analyzed with a FACScan flow cytometer (Becton Dickinson). A total of 10,000 events per sample were considered. The soluble GAGs (heparin, from porcine intestinal mucosa; chondroitin sulfate A, from bovine trachea; chondroitin sulfate B, from porcine intestinal mucosa; and chondroitin sulfate C, from shark cartilage) and dextran sulfate (molecular weight, 5000) were all purchased from Sigma. In the FACS experiments with soluble GAG analogues, 5 × 105 CHO K1 cells were incubated in fresh culture medium with the addition of 1 μg/ml GST-Tat-GFP protein, 100 μm chloroquine, and the appropriate amount of GAG dissolved in PBS. Inhibition of Tat transactivation by soluble GAGs was studied in 3 × 105 CHO K1 cells transfected with 1 μg of pBlue-LTR-CAT (containing an LTR-CAT cassette, a kind gift of B. Berkhout) using Lipofectin (Life Technologies, Inc.). Forty-eight hours after transfection, cells were treated with different concentrations of GAGs along with 1 μg/ml GST-Tat-GFP and 100 μmchloroquine in fresh culture medium for 14 h. After this time period, cells were washed four times with PBS, and fresh culture medium was added. CAT assays were performed after 36 h according to standard protocols (59Sambrook J. Fritsch E.F. Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY1989Google Scholar) and after normalization for transfection efficiency. Each experimental point was performed in triplicate. Enzymatic treatment with GAG lyases was performed as described (60Summerford C. Samulski R.J. J. Virol. 1998; 72: 1438-1445Crossref PubMed Google Scholar). Briefly, 5 × 105 CHO K1 cells were incubated with the GAG lyases (Sigma; dissolved in PBS) in PBS containing 0.1% bovine serum albumin, 0.2% gelatin, and 0.1% glucose for 40 min at 37 °C in a CO2incubator. Cells were then washed gently 6 times with PBS and incubated in Ham's F-10 medium without serum in the presence of 1 μg/ml GST-Tat-GFP protein and 100 μm chloroquine for 5 h. Cells were then washed 4 times with PBS, trypsinized, washed again with complete Ham's F-10 medium, resuspended, and used for FACS analysis. Each experimental point was performed in triplicate. For CAT assays, 1 × 106 cells were seeded in 10-cm-diameter dishes. After 24 h, cells were transfected with either pBlue-LTR-CAT (1 μg) alone or together with pCDNA3-Tat-GFP (1 μg). The latter plasmid was obtained by recovering the Tat-GFP cassette of plasmid pGEX2T-Tat-GFP using Eco RI andBam HI and cloning into the respective sites of vector pCDNA3 (Invitrogen, Carlsbad, CA). In this plasmid, Tat-GFP is expressed under the control of the cytomegalovirus promoter. After lipofection, cells were washed twice with PBS and incubated in fresh culture medium for additional 24 h. Cells transfected with pBlue-LTR-CAT alone were supplied with 1 μg/ml GST-Tat-GFP in the presence of 100 μm chloroquine and incubated for 24 h. Cells were then washed twice with PBS and incubated for additional 24 h in fresh medium. Finally, cells were scraped off the dishes using a rubber policeman, and cell extracts were used for CAT assays. Wild type CHO K1 cells, the mutated pgs A-745 clone, and HeLa cells were transfected by Lipofectin with 1 μg/ml pBlue-LTR-CAT. After 48 h, cells were trypsinized and plated in equal number with CHO and A-745 cell clones expressing Tat-GFP, with the combinations reported in Fig. 7A. Cells were incubated in complete medium containing 100 μmchloroquine. Seventy-two hours later, cells were scraped off the plate with a rubber policeman, and cell lysates were analyzed for CAT activity. To explore the mechanisms of HIV-1 LTR transactivation by Tat, in the last few years we have taken advantage of the property of a GST-Tat fusion protein to enter cells when added to the cell culture medium (3Marzio G. Tyagi M. Gutierrez M.I. Giacca M. Proc. Natl. Acad. Sci. U. S. A. 1998; 23: 13519-13524Crossref Scopus (266) Google Scholar, 48Demarchi F. d'Adda di Fagagna F. Falaschi A. Giacca M. J. Virol. 1996; 70: 4427-4437Crossref PubMed Google Scholar). This protein contains the first 86 amino acids of Tat fused at the C terminus of the GST protein (∼34 kDa total). The kinetics of HIV-1 LTR transactivation by GST-Tat and by a fusion protein additionally containing the GFP at the C terminus (∼60 kDa total) are shown in Fig. 1 A. LTR transactivation starts to be observed a few hours after the addition of GST-Tat to the culture medium of HL3T1 cells (containing an integrated LTR-CAT reporter gene that is silent in the absence of stimulation) and peaks at 10–15 h. The kinetics of LTR transactivation by the GST-Tat-GFP protein is delayed by a few hours but still reaches the same levels after 15–20 h. These data are consistent with previous findings showing a peak of LTR-CAT mRNA expression ∼5 h after the addition of exogenous GST-Tat protein to the culture medium (48Demarchi F. d'Adda di Fagagna F. Falaschi A. Giacca M. J. Virol. 1996; 70: 4427-4437Crossref PubMed Google Scholar). As shown in Fig. 1 B, LTR transactivation is already appreciable at a concentration of GST-Tat protein equal to 50 ng/ml (∼1.5 nm) and reaches a plateau at 200 ng/ml. A similar dose response curve is evident for the GST-Tat-GFP protein when considering the molar differences between the two preparations. In contrast to these recombinant proteins, which contain the wild type Tat amino acid sequence, fusion of GST to the Tat R (49Biswas D.K. Salas T.R. Wang F. Ahlers C.M. Dezube B.J. Pardee A.B. J. Virol. 1995; 69: 7437-7444Crossref PubMed Google Scholar, 50Westendorp M.O. Shatrov V.A. Schulze-Osthoff K. Frank R. Kraft M. Los M. Krammer P.H. Droge W. Lehmann V. EMBO J. 1995; 14: 546-554Crossref PubMed Scopus (367) Google Scholar, 51Fawell S. Seery J. Daikh Y. Moore C. Chen L.L. Pepinsky B. Barsoum J. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 664-668Crossref PubMed Scopus (1107) Google Scholar, 52Nagahara H. Vocero-Akbani A.M. Snyder E.L. Ho A. Latham D.G. Lissy N.A. Becker-Hapak M. Ezhevsky S.A. Dowdy S.F. Nat. Med. 1998; 4: 1449-1452Crossref PubMed Scopus (887) Google Scholar, 53Schwarze S.R. Ho A. Vocero-Akbani A. Dowdy S.F. Science. 1999; 285: 1569-1572Crossref PubMed Scopus (2210) Google Scholar, 54Rusnati M. Coltrini D. Oreste P. Zoppetti G. Albini A. Noonan D. d'Adda di Fagagna F. Giacca M. Presta M. J. Biol. Chem. 1997; 272: 11313-11320Abstract Full Text Full Text PDF PubMed Scopus (176) Google Scholar, 55Rusnati M. Tulipano G. Urbinati C. Tanghetti E. Giuliani R. Giacca M. Ciomei M. Corallini A. Presta M. J. Biol. Chem. 1998; 273: 16027-16037Abstract" @default.
- W2055296721 created "2016-06-24" @default.
- W2055296721 creator A5005942566 @default.
- W2055296721 creator A5023138915 @default.
- W2055296721 creator A5038230299 @default.
- W2055296721 creator A5070195491 @default.
- W2055296721 date "2001-02-01" @default.
- W2055296721 modified "2023-10-15" @default.
- W2055296721 title "Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans" @default.
- W2055296721 cites W1479877946 @default.
- W2055296721 cites W1491038568 @default.
- W2055296721 cites W1494551606 @default.
- W2055296721 cites W1504042724 @default.
- W2055296721 cites W1524845305 @default.
- W2055296721 cites W1527810981 @default.
- W2055296721 cites W1543084458 @default.
- W2055296721 cites W1560897882 @default.
- W2055296721 cites W1574987094 @default.
- W2055296721 cites W1575139878 @default.
- W2055296721 cites W1607630266 @default.
- W2055296721 cites W1790169325 @default.
- W2055296721 cites W1914838827 @default.
- W2055296721 cites W1962437344 @default.
- W2055296721 cites W1966700067 @default.
- W2055296721 cites W1991261634 @default.
- W2055296721 cites W1994231905 @default.
- W2055296721 cites W1998421163 @default.
- W2055296721 cites W2001582257 @default.
- W2055296721 cites W2003658370 @default.
- W2055296721 cites W2004687734 @default.
- W2055296721 cites W2013216622 @default.
- W2055296721 cites W2014964914 @default.
- W2055296721 cites W2023525921 @default.
- W2055296721 cites W2026675906 @default.
- W2055296721 cites W2038843757 @default.
- W2055296721 cites W2042143995 @default.
- W2055296721 cites W2046854154 @default.
- W2055296721 cites W2047062904 @default.
- W2055296721 cites W2049163289 @default.
- W2055296721 cites W205758415 @default.
- W2055296721 cites W2057973294 @default.
- W2055296721 cites W2062348686 @default.
- W2055296721 cites W2064050331 @default.
- W2055296721 cites W2064914230 @default.
- W2055296721 cites W2071009892 @default.
- W2055296721 cites W2072528655 @default.
- W2055296721 cites W2074192294 @default.
- W2055296721 cites W2074395777 @default.
- W2055296721 cites W2076859770 @default.
- W2055296721 cites W2079335891 @default.
- W2055296721 cites W2081545569 @default.
- W2055296721 cites W2089421056 @default.
- W2055296721 cites W2091677322 @default.
- W2055296721 cites W2092285290 @default.
- W2055296721 cites W2099644089 @default.
- W2055296721 cites W2105668301 @default.
- W2055296721 cites W2108857688 @default.
- W2055296721 cites W2110097921 @default.
- W2055296721 cites W2112939298 @default.
- W2055296721 cites W2117094435 @default.
- W2055296721 cites W2117271577 @default.
- W2055296721 cites W2118090371 @default.
- W2055296721 cites W2119043372 @default.
- W2055296721 cites W2148330261 @default.
- W2055296721 cites W2154329712 @default.
- W2055296721 cites W2156657499 @default.
- W2055296721 cites W2158566329 @default.
- W2055296721 cites W2161430263 @default.
- W2055296721 cites W2164272793 @default.
- W2055296721 cites W2165085742 @default.
- W2055296721 cites W2167475370 @default.
- W2055296721 cites W2317605718 @default.
- W2055296721 cites W2410104673 @default.
- W2055296721 cites W920511653 @default.
- W2055296721 doi "https://doi.org/10.1074/jbc.m006701200" @default.
- W2055296721 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11024024" @default.
- W2055296721 hasPublicationYear "2001" @default.
- W2055296721 type Work @default.
- W2055296721 sameAs 2055296721 @default.
- W2055296721 citedByCount "671" @default.
- W2055296721 countsByYear W20552967212012 @default.
- W2055296721 countsByYear W20552967212013 @default.
- W2055296721 countsByYear W20552967212014 @default.
- W2055296721 countsByYear W20552967212015 @default.
- W2055296721 countsByYear W20552967212016 @default.
- W2055296721 countsByYear W20552967212017 @default.
- W2055296721 countsByYear W20552967212018 @default.
- W2055296721 countsByYear W20552967212019 @default.
- W2055296721 countsByYear W20552967212020 @default.
- W2055296721 countsByYear W20552967212021 @default.
- W2055296721 countsByYear W20552967212022 @default.
- W2055296721 countsByYear W20552967212023 @default.
- W2055296721 crossrefType "journal-article" @default.
- W2055296721 hasAuthorship W2055296721A5005942566 @default.
- W2055296721 hasAuthorship W2055296721A5023138915 @default.
- W2055296721 hasAuthorship W2055296721A5038230299 @default.
- W2055296721 hasAuthorship W2055296721A5070195491 @default.
- W2055296721 hasBestOaLocation W20552967211 @default.