Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055362477> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2055362477 endingPage "3801" @default.
- W2055362477 startingPage "3789" @default.
- W2055362477 abstract "The logistic regression model has become the standard analysing tool for binary responses in medical statistics. Methods for assessing goodness-of-fit, however, are less developed where this problem is especially pronounced in performing global goodness-of-fit tests with sparse data, that is, if the data contain only a small numbers of observations for each pattern of covariate values. In this situation it has been known for a long time that the standard goodness-of-fit tests (residual deviance and Pearson chi-square) behave unsatisfactorily if p-values are calculated from the chi(2)-distribution. As a remedy in this situation the Hosmer-Lemeshow test is frequently recommended; it relies on a new grouping of the observations to avoid sparseness, where this grouping depends on the estimated probabilities from the model. It has been shown, however, that the Hosmer-Lemeshow test also has some deficiencies, for example, it depends heavily on the calculating algorithm and thus different implementations might lead to different conclusions regarding the fit of the model. We present some alternative tests from the statistical literature which should also perform well with sparse data. Results from a simulation study are given which show that there exist some goodness-of-fit tests (for example, the Farrington test) that have good properties regarding size and power and that even outperform the Hosmer-Lemeshow test. We illustrate the various tests with an example from dermatology on occupational hand eczema in hairdressers." @default.
- W2055362477 created "2016-06-24" @default.
- W2055362477 creator A5067796093 @default.
- W2055362477 date "2002-01-01" @default.
- W2055362477 modified "2023-10-08" @default.
- W2055362477 title "Global goodness-of-fit tests in logistic regression with sparse data" @default.
- W2055362477 cites W1967148583 @default.
- W2055362477 cites W1967816589 @default.
- W2055362477 cites W1968256071 @default.
- W2055362477 cites W1978580619 @default.
- W2055362477 cites W1990113588 @default.
- W2055362477 cites W2017813479 @default.
- W2055362477 cites W2020214980 @default.
- W2055362477 cites W2024574673 @default.
- W2055362477 cites W2031687681 @default.
- W2055362477 cites W2044581206 @default.
- W2055362477 cites W2049667592 @default.
- W2055362477 cites W2059497768 @default.
- W2055362477 cites W2075782125 @default.
- W2055362477 cites W2101861337 @default.
- W2055362477 cites W2132674227 @default.
- W2055362477 cites W2140468511 @default.
- W2055362477 cites W2317795240 @default.
- W2055362477 cites W2318560243 @default.
- W2055362477 cites W2529897098 @default.
- W2055362477 cites W4246784033 @default.
- W2055362477 cites W4296980202 @default.
- W2055362477 cites W4301861531 @default.
- W2055362477 cites W2076189484 @default.
- W2055362477 doi "https://doi.org/10.1002/sim.1421" @default.
- W2055362477 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12483767" @default.
- W2055362477 hasPublicationYear "2002" @default.
- W2055362477 type Work @default.
- W2055362477 sameAs 2055362477 @default.
- W2055362477 citedByCount "64" @default.
- W2055362477 countsByYear W20553624772012 @default.
- W2055362477 countsByYear W20553624772013 @default.
- W2055362477 countsByYear W20553624772014 @default.
- W2055362477 countsByYear W20553624772015 @default.
- W2055362477 countsByYear W20553624772016 @default.
- W2055362477 countsByYear W20553624772017 @default.
- W2055362477 countsByYear W20553624772018 @default.
- W2055362477 countsByYear W20553624772019 @default.
- W2055362477 countsByYear W20553624772020 @default.
- W2055362477 countsByYear W20553624772021 @default.
- W2055362477 countsByYear W20553624772022 @default.
- W2055362477 countsByYear W20553624772023 @default.
- W2055362477 crossrefType "journal-article" @default.
- W2055362477 hasAuthorship W2055362477A5067796093 @default.
- W2055362477 hasConcept C105795698 @default.
- W2055362477 hasConcept C119043178 @default.
- W2055362477 hasConcept C132480984 @default.
- W2055362477 hasConcept C149782125 @default.
- W2055362477 hasConcept C151956035 @default.
- W2055362477 hasConcept C177599991 @default.
- W2055362477 hasConcept C33923547 @default.
- W2055362477 hasConcept C41008148 @default.
- W2055362477 hasConcept C87007009 @default.
- W2055362477 hasConcept C94465730 @default.
- W2055362477 hasConceptScore W2055362477C105795698 @default.
- W2055362477 hasConceptScore W2055362477C119043178 @default.
- W2055362477 hasConceptScore W2055362477C132480984 @default.
- W2055362477 hasConceptScore W2055362477C149782125 @default.
- W2055362477 hasConceptScore W2055362477C151956035 @default.
- W2055362477 hasConceptScore W2055362477C177599991 @default.
- W2055362477 hasConceptScore W2055362477C33923547 @default.
- W2055362477 hasConceptScore W2055362477C41008148 @default.
- W2055362477 hasConceptScore W2055362477C87007009 @default.
- W2055362477 hasConceptScore W2055362477C94465730 @default.
- W2055362477 hasIssue "24" @default.
- W2055362477 hasLocation W20553624771 @default.
- W2055362477 hasLocation W20553624772 @default.
- W2055362477 hasOpenAccess W2055362477 @default.
- W2055362477 hasPrimaryLocation W20553624771 @default.
- W2055362477 hasRelatedWork W1600093848 @default.
- W2055362477 hasRelatedWork W2001582435 @default.
- W2055362477 hasRelatedWork W2621433169 @default.
- W2055362477 hasRelatedWork W2787602013 @default.
- W2055362477 hasRelatedWork W2955505397 @default.
- W2055362477 hasRelatedWork W3118520592 @default.
- W2055362477 hasRelatedWork W4226213673 @default.
- W2055362477 hasRelatedWork W4237472475 @default.
- W2055362477 hasRelatedWork W4312222493 @default.
- W2055362477 hasRelatedWork W4378772290 @default.
- W2055362477 hasVolume "21" @default.
- W2055362477 isParatext "false" @default.
- W2055362477 isRetracted "false" @default.
- W2055362477 magId "2055362477" @default.
- W2055362477 workType "article" @default.