Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055365877> ?p ?o ?g. }
- W2055365877 endingPage "226" @default.
- W2055365877 startingPage "211" @default.
- W2055365877 abstract "In this article I investigate how Mediterranean sclerophylls integrate drought resistance mechanisms across organization levels and a functional whole plant interpretation of mechanistic leaf gas exchange models is provided. The feedback between transpiration, carbon gain and soil moisture through a plant gas exchange simulator coupled to a stochastic soil water balance model is described. In previous studies stomatal responses to environment are modeled through an empirical relationship, based on correlative behavior with respect to net assimilation rate, that has been shown to accurately predict gas exchange rates under a range of climatic conditions. In these models, however, the parameter that controls the level of conductance attained for a given assimilation rate (gF) is unknown under drought conditions, precluding their application to water limited ecosystems. In this article I propose an algorithm to compute this parameter based on the assumption that canopy conductance must convey to a strategy of long-term carbon gain maximization and avoidance of mortality by the plant, the unit of natural selection. Two possible negative feedback control strategies between gF and soil moisture, depending on whether the plant senses the environment via leaf or soil water potential are tested. It is found that a strategy operating via leaf potential is more effective from a whole plant perspective than direct sensing of soil water status. The parameter gF provides an integrative description of various processes (e.g. concentration of root generated compounds) leading to stomatal closure. Thus this result supports the view that stomatal control requires both hydraulic and chemical signaling to be effective. Simulations based on a negative feedback via leaf potential predict linear dependency between gF and soil water potential during the dry period as reported by detailed empirical studies on gF variation. Comparison of the whole plant simulator against a leaf based optimization model suggests that stomatal conductance represents an optimal solution of a hierarchically structured system that operates at two temporal scales. At short time scales (minutes to hours) stomata perform a sub-optimal system strategy that allows the plant to optimize water loss per unit of carbon gain. Simultaneously, adjustment of canopy conductance to soil water status allows the plant to maximize carbon gain and avoid mortality at longer time scales (hours to days). These results are relevant both to understand how plants integrate process across functional levels and to proper description of soil water resources in mechanistic biosphere vegetation dynamic models." @default.
- W2055365877 created "2016-06-24" @default.
- W2055365877 creator A5008403439 @default.
- W2055365877 date "2004-09-01" @default.
- W2055365877 modified "2023-10-16" @default.
- W2055365877 title "Integration of drought tolerance mechanisms in Mediterranean sclerophylls: a functional interpretation of leaf gas exchange simulators" @default.
- W2055365877 cites W1209269186 @default.
- W2055365877 cites W136088204 @default.
- W2055365877 cites W146232850 @default.
- W2055365877 cites W153013404 @default.
- W2055365877 cites W1544418244 @default.
- W2055365877 cites W180078838 @default.
- W2055365877 cites W1971866613 @default.
- W2055365877 cites W1975761252 @default.
- W2055365877 cites W1980396438 @default.
- W2055365877 cites W1993538829 @default.
- W2055365877 cites W1999112734 @default.
- W2055365877 cites W2013198163 @default.
- W2055365877 cites W2022257873 @default.
- W2055365877 cites W2024750460 @default.
- W2055365877 cites W2028311764 @default.
- W2055365877 cites W2029074727 @default.
- W2055365877 cites W2037592525 @default.
- W2055365877 cites W2046857879 @default.
- W2055365877 cites W2052054285 @default.
- W2055365877 cites W2066163557 @default.
- W2055365877 cites W2067156694 @default.
- W2055365877 cites W2067871647 @default.
- W2055365877 cites W2068461920 @default.
- W2055365877 cites W2069038914 @default.
- W2055365877 cites W2075905725 @default.
- W2055365877 cites W2086854884 @default.
- W2055365877 cites W2088520642 @default.
- W2055365877 cites W2092020865 @default.
- W2055365877 cites W2096327547 @default.
- W2055365877 cites W2099742463 @default.
- W2055365877 cites W2101493446 @default.
- W2055365877 cites W2107002960 @default.
- W2055365877 cites W2123202943 @default.
- W2055365877 cites W2126860661 @default.
- W2055365877 cites W2127685346 @default.
- W2055365877 cites W2135089402 @default.
- W2055365877 cites W2146532619 @default.
- W2055365877 cites W2146719438 @default.
- W2055365877 cites W2153427373 @default.
- W2055365877 cites W2158683657 @default.
- W2055365877 cites W2170866521 @default.
- W2055365877 cites W2170957203 @default.
- W2055365877 cites W2171218247 @default.
- W2055365877 cites W2171373610 @default.
- W2055365877 cites W2206700095 @default.
- W2055365877 cites W2316361870 @default.
- W2055365877 cites W2322480672 @default.
- W2055365877 cites W2490024593 @default.
- W2055365877 cites W3014608004 @default.
- W2055365877 cites W307121392 @default.
- W2055365877 cites W4253288472 @default.
- W2055365877 doi "https://doi.org/10.1016/j.ecolmodel.2003.11.013" @default.
- W2055365877 hasPublicationYear "2004" @default.
- W2055365877 type Work @default.
- W2055365877 sameAs 2055365877 @default.
- W2055365877 citedByCount "26" @default.
- W2055365877 countsByYear W20553658772012 @default.
- W2055365877 countsByYear W20553658772013 @default.
- W2055365877 countsByYear W20553658772014 @default.
- W2055365877 countsByYear W20553658772018 @default.
- W2055365877 countsByYear W20553658772020 @default.
- W2055365877 countsByYear W20553658772021 @default.
- W2055365877 crossrefType "journal-article" @default.
- W2055365877 hasAuthorship W2055365877A5008403439 @default.
- W2055365877 hasConcept C101000010 @default.
- W2055365877 hasConcept C126255220 @default.
- W2055365877 hasConcept C127413603 @default.
- W2055365877 hasConcept C138885662 @default.
- W2055365877 hasConcept C157517311 @default.
- W2055365877 hasConcept C159390177 @default.
- W2055365877 hasConcept C159750122 @default.
- W2055365877 hasConcept C183688256 @default.
- W2055365877 hasConcept C187320778 @default.
- W2055365877 hasConcept C18903297 @default.
- W2055365877 hasConcept C24939127 @default.
- W2055365877 hasConcept C2776330181 @default.
- W2055365877 hasConcept C2781045423 @default.
- W2055365877 hasConcept C2992000610 @default.
- W2055365877 hasConcept C33923547 @default.
- W2055365877 hasConcept C39432304 @default.
- W2055365877 hasConcept C41008148 @default.
- W2055365877 hasConcept C41895202 @default.
- W2055365877 hasConcept C4646841 @default.
- W2055365877 hasConcept C59822182 @default.
- W2055365877 hasConcept C75649859 @default.
- W2055365877 hasConcept C86803240 @default.
- W2055365877 hasConceptScore W2055365877C101000010 @default.
- W2055365877 hasConceptScore W2055365877C126255220 @default.
- W2055365877 hasConceptScore W2055365877C127413603 @default.
- W2055365877 hasConceptScore W2055365877C138885662 @default.
- W2055365877 hasConceptScore W2055365877C157517311 @default.
- W2055365877 hasConceptScore W2055365877C159390177 @default.