Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055571567> ?p ?o ?g. }
- W2055571567 endingPage "2049" @default.
- W2055571567 startingPage "2024" @default.
- W2055571567 abstract "More than 20 techniques have been developed to de-noise time-series vegetation index data from different satellite sensors to reconstruct long time-series data sets. Although many studies have compared Normalized Difference Vegetation Index (NDVI) noise-reduction techniques, few studies have compared these techniques systematically and comprehensively. This study tested eight techniques for smoothing different vegetation types using different types of multi-temporal NDVI data (Advanced Very High Resolution Radiometer (AVHRR) (Global Inventory Modeling and Map Studies (GIMMS) and Pathfinder AVHRR Land (PAL), Satellite Pour l’ Observation de la Terre (SPOT) VEGETATION (VGT), and Moderate Resolution Imaging Spectroradiometer (MODIS) (Terra)) with the ultimate purpose of determining the best reconstruction technique for each type of vegetation captured with four satellite sensors. These techniques include the modified best index slope extraction (M-BISE) technique, the Savitzky-Golay (S-G) technique, the mean value iteration filter (MVI) technique, the asymmetric Gaussian (A-G) technique, the double logistic (D-L) technique, the changing-weight filter (CW) technique, the interpolation for data reconstruction (IDR) technique, and the Whittaker smoother (WS) technique. These techniques were evaluated by calculating the root mean square error (RMSE), the Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC). The results indicate that the S-G, CW, and WS techniques perform better than the other tested techniques, while the IDR, M-BISE, and MVI techniques performed worse than the other techniques. The best de-noise technique varies with different vegetation types and NDVI data sources. The S-G performs best in most situations. In addition, the CW and WS are effective techniques that were exceeded only by the S-G technique. The assessment results are consistent in terms of the three evaluation indexes for GIMMS, PAL, and SPOT data in the study area, but not for the MODIS data. The study will be very helpful for choosing reconstruction techniques for long time-series data sets." @default.
- W2055571567 created "2016-06-24" @default.
- W2055571567 creator A5005821943 @default.
- W2055571567 creator A5007312763 @default.
- W2055571567 creator A5017010923 @default.
- W2055571567 creator A5049026009 @default.
- W2055571567 creator A5049973748 @default.
- W2055571567 creator A5066473046 @default.
- W2055571567 date "2014-03-06" @default.
- W2055571567 modified "2023-10-16" @default.
- W2055571567 title "Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China" @default.
- W2055571567 cites W1965347260 @default.
- W2055571567 cites W1967542684 @default.
- W2055571567 cites W1970174849 @default.
- W2055571567 cites W1974047452 @default.
- W2055571567 cites W1981717921 @default.
- W2055571567 cites W1982480630 @default.
- W2055571567 cites W1983930403 @default.
- W2055571567 cites W1991055500 @default.
- W2055571567 cites W1996905547 @default.
- W2055571567 cites W2002908628 @default.
- W2055571567 cites W2003326025 @default.
- W2055571567 cites W2009367301 @default.
- W2055571567 cites W2015296785 @default.
- W2055571567 cites W2018636632 @default.
- W2055571567 cites W2029342456 @default.
- W2055571567 cites W2035388338 @default.
- W2055571567 cites W2035617489 @default.
- W2055571567 cites W2038990264 @default.
- W2055571567 cites W2039707504 @default.
- W2055571567 cites W2057387551 @default.
- W2055571567 cites W2060080268 @default.
- W2055571567 cites W2062777625 @default.
- W2055571567 cites W2069276699 @default.
- W2055571567 cites W2069461688 @default.
- W2055571567 cites W2070360040 @default.
- W2055571567 cites W2072093516 @default.
- W2055571567 cites W2076908697 @default.
- W2055571567 cites W2088249878 @default.
- W2055571567 cites W2088439043 @default.
- W2055571567 cites W2098262919 @default.
- W2055571567 cites W2102887902 @default.
- W2055571567 cites W2113503197 @default.
- W2055571567 cites W2115694969 @default.
- W2055571567 cites W2117490284 @default.
- W2055571567 cites W2119736320 @default.
- W2055571567 cites W2121401610 @default.
- W2055571567 cites W2126250722 @default.
- W2055571567 cites W2127179457 @default.
- W2055571567 cites W2131311436 @default.
- W2055571567 cites W2138751033 @default.
- W2055571567 cites W2139683263 @default.
- W2055571567 cites W2144354331 @default.
- W2055571567 cites W2150452912 @default.
- W2055571567 cites W2151011640 @default.
- W2055571567 cites W2152186383 @default.
- W2055571567 cites W2153989276 @default.
- W2055571567 cites W2158255738 @default.
- W2055571567 cites W2158744420 @default.
- W2055571567 cites W2168175751 @default.
- W2055571567 cites W2168910676 @default.
- W2055571567 cites W2169678197 @default.
- W2055571567 cites W2333879358 @default.
- W2055571567 cites W4245705676 @default.
- W2055571567 doi "https://doi.org/10.3390/rs6032024" @default.
- W2055571567 hasPublicationYear "2014" @default.
- W2055571567 type Work @default.
- W2055571567 sameAs 2055571567 @default.
- W2055571567 citedByCount "96" @default.
- W2055571567 countsByYear W20555715672014 @default.
- W2055571567 countsByYear W20555715672015 @default.
- W2055571567 countsByYear W20555715672016 @default.
- W2055571567 countsByYear W20555715672017 @default.
- W2055571567 countsByYear W20555715672018 @default.
- W2055571567 countsByYear W20555715672019 @default.
- W2055571567 countsByYear W20555715672020 @default.
- W2055571567 countsByYear W20555715672021 @default.
- W2055571567 countsByYear W20555715672022 @default.
- W2055571567 countsByYear W20555715672023 @default.
- W2055571567 crossrefType "journal-article" @default.
- W2055571567 hasAuthorship W2055571567A5005821943 @default.
- W2055571567 hasAuthorship W2055571567A5007312763 @default.
- W2055571567 hasAuthorship W2055571567A5017010923 @default.
- W2055571567 hasAuthorship W2055571567A5049026009 @default.
- W2055571567 hasAuthorship W2055571567A5049973748 @default.
- W2055571567 hasAuthorship W2055571567A5066473046 @default.
- W2055571567 hasBestOaLocation W20555715671 @default.
- W2055571567 hasConcept C105795698 @default.
- W2055571567 hasConcept C111368507 @default.
- W2055571567 hasConcept C126674687 @default.
- W2055571567 hasConcept C127313418 @default.
- W2055571567 hasConcept C127413603 @default.
- W2055571567 hasConcept C132651083 @default.
- W2055571567 hasConcept C139945424 @default.
- W2055571567 hasConcept C146978453 @default.
- W2055571567 hasConcept C1549246 @default.
- W2055571567 hasConcept C159078339 @default.
- W2055571567 hasConcept C19269812 @default.