Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055578504> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2055578504 abstract "We generalize a theorem of R. Thomas, which sometimes allows one to tell by inspection that a finitely presented group G is infinite. Groups to which his theorem applies have presentations with not too many more relators than generators, with at least some of the relators being proper powers. Our generalization provides lower bounds for the ranks of the abelianizations of certain normal subgroups of G in terms of their indices. We derive Thomas's theorem as a special case." @default.
- W2055578504 created "2016-06-24" @default.
- W2055578504 creator A5008002489 @default.
- W2055578504 date "1999-01-01" @default.
- W2055578504 modified "2023-09-23" @default.
- W2055578504 title "Spotting infinite groups" @default.
- W2055578504 doi "https://doi.org/10.1017/s0305004198002758" @default.
- W2055578504 hasPublicationYear "1999" @default.
- W2055578504 type Work @default.
- W2055578504 sameAs 2055578504 @default.
- W2055578504 citedByCount "4" @default.
- W2055578504 countsByYear W20555785042013 @default.
- W2055578504 countsByYear W20555785042021 @default.
- W2055578504 crossrefType "journal-article" @default.
- W2055578504 hasAuthorship W2055578504A5008002489 @default.
- W2055578504 hasConcept C118615104 @default.
- W2055578504 hasConcept C134306372 @default.
- W2055578504 hasConcept C136119220 @default.
- W2055578504 hasConcept C177148314 @default.
- W2055578504 hasConcept C178790620 @default.
- W2055578504 hasConcept C185592680 @default.
- W2055578504 hasConcept C199343813 @default.
- W2055578504 hasConcept C202444582 @default.
- W2055578504 hasConcept C2777686260 @default.
- W2055578504 hasConcept C2781311116 @default.
- W2055578504 hasConcept C33923547 @default.
- W2055578504 hasConcept C71924100 @default.
- W2055578504 hasConceptScore W2055578504C118615104 @default.
- W2055578504 hasConceptScore W2055578504C134306372 @default.
- W2055578504 hasConceptScore W2055578504C136119220 @default.
- W2055578504 hasConceptScore W2055578504C177148314 @default.
- W2055578504 hasConceptScore W2055578504C178790620 @default.
- W2055578504 hasConceptScore W2055578504C185592680 @default.
- W2055578504 hasConceptScore W2055578504C199343813 @default.
- W2055578504 hasConceptScore W2055578504C202444582 @default.
- W2055578504 hasConceptScore W2055578504C2777686260 @default.
- W2055578504 hasConceptScore W2055578504C2781311116 @default.
- W2055578504 hasConceptScore W2055578504C33923547 @default.
- W2055578504 hasConceptScore W2055578504C71924100 @default.
- W2055578504 hasLocation W20555785041 @default.
- W2055578504 hasOpenAccess W2055578504 @default.
- W2055578504 hasPrimaryLocation W20555785041 @default.
- W2055578504 hasRelatedWork W1999773341 @default.
- W2055578504 hasRelatedWork W2015425365 @default.
- W2055578504 hasRelatedWork W2015509583 @default.
- W2055578504 hasRelatedWork W2015825651 @default.
- W2055578504 hasRelatedWork W2016698575 @default.
- W2055578504 hasRelatedWork W2034730976 @default.
- W2055578504 hasRelatedWork W2049825161 @default.
- W2055578504 hasRelatedWork W2098512551 @default.
- W2055578504 hasRelatedWork W2127508340 @default.
- W2055578504 hasRelatedWork W2139623322 @default.
- W2055578504 hasRelatedWork W2172468953 @default.
- W2055578504 hasRelatedWork W2261444801 @default.
- W2055578504 hasRelatedWork W2330698946 @default.
- W2055578504 hasRelatedWork W2348244329 @default.
- W2055578504 hasRelatedWork W2770246545 @default.
- W2055578504 hasRelatedWork W2795609780 @default.
- W2055578504 hasRelatedWork W2922913055 @default.
- W2055578504 hasRelatedWork W2949278404 @default.
- W2055578504 hasRelatedWork W2949682249 @default.
- W2055578504 hasRelatedWork W2950794907 @default.
- W2055578504 isParatext "false" @default.
- W2055578504 isRetracted "false" @default.
- W2055578504 magId "2055578504" @default.
- W2055578504 workType "article" @default.