Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055604456> ?p ?o ?g. }
- W2055604456 endingPage "216" @default.
- W2055604456 startingPage "200" @default.
- W2055604456 abstract "Apatite is a common U- and Th-bearing accessory mineral in igneous and metamorphic rocks, and a minor but widespread detrital component in clastic sedimentary rocks. U–Pb and Th–Pb dating of apatite has potential application in sedimentary provenance studies, as it likely represents first cycle detritus compared to the polycyclic behavior of zircon. However, low U, Th and radiogenic Pb concentrations, elevated common Pb and the lack of a U–Th–Pb apatite standard remain significant challenges in dating apatite by LA-ICPMS, and consequently in developing the chronometer as a provenance tool. This study has determined U–Pb and Th–Pb ages for seven well known apatite occurrences (Durango, Emerald Lake, Kovdor, Mineville, Mud Tank, Otter Lake and Slyudyanka) by LA-ICPMS. Analytical procedures involved rastering a 10 μm spot over a 40 × 40 μm square to a depth of 10 μm using a Geolas 193 nm ArF excimer laser coupled to a Thermo ElementXR single-collector ICPMS. These raster conditions minimized laser-induced inter-element fractionation, which was corrected for using the back-calculated intercept of the time-resolved signal. A Tl–U–Bi–Np tracer solution was aspirated with the sample into the plasma to correct for instrument mass bias. External standards (Plešovice and 91500 zircon, NIST SRM 610 and 612 silicate glasses and STDP5 phosphate glass) along with Kovdor apatite were analyzed to monitor U–Pb, Th–Pb, U–Th and Pb–Pb ratios Common Pb correction employed the 207Pb method, and also a 208Pb correction method for samples with low Th/U. The 207Pb and 208Pb corrections employed either the initial Pb isotopic composition or the Stacey and Kramers model and propagated conservative uncertainties in the initial Pb isotopic composition. Common Pb correction using the Stacey and Kramers (1975) model employed an initial Pb isotopic composition calculated from either the estimated U–Pb age of the sample or an iterative approach. The age difference between these two methods is typically less than 2%, suggesting that the iterative approach works well for samples where there are no constraints on the initial Pb composition, such as a detrital sample. No 204Pb correction was undertaken because of low 204Pb counts on single collector instruments and 204Pb interference by 204Hg in the argon gas supply. Age calculations employed between 11 and 33 analyses per sample and used a weighted average of the common Pb-corrected ages, a Tera–Wasserburg Concordia intercept age and a Tera–Wasserburg Concordia intercept age anchored through common Pb. The samples in general yield ages consistent (at the 2σ level) with independent estimates of the U–Pb apatite age, which demonstrates the suitability of the analytical protocol employed. Weighted mean age uncertainties are as low as 1–2% for U- and/or Th-rich Palaeozoic–Neoproterozoic samples; the uncertainty on the youngest sample, the Cenozoic (31.44 Ma) Durango apatite, ranges from 3.7–7.6% according to the common Pb correction method employed. The accurate and relatively precise common Pb-corrected ages demonstrate the U–Pb and Th–Pb apatite chronometers are suitable as sedimentary provenance tools. The Kovdor carbonatite apatite is recommended as a potential U–Pb and Th–Pb apatite standard as it yields precise and reproducible 207Pb-corrected, 232Th–208Pb, and common Pb-anchored Tera–Wasserburg Concordia intercept ages." @default.
- W2055604456 created "2016-06-24" @default.
- W2055604456 creator A5021638214 @default.
- W2055604456 creator A5041873183 @default.
- W2055604456 creator A5065458373 @default.
- W2055604456 date "2011-01-01" @default.
- W2055604456 modified "2023-10-18" @default.
- W2055604456 title "U–Pb and Th–Pb dating of apatite by LA-ICPMS" @default.
- W2055604456 cites W1883616563 @default.
- W2055604456 cites W1922245190 @default.
- W2055604456 cites W1932261477 @default.
- W2055604456 cites W1966286857 @default.
- W2055604456 cites W1972325111 @default.
- W2055604456 cites W1972401026 @default.
- W2055604456 cites W1976031625 @default.
- W2055604456 cites W1976264605 @default.
- W2055604456 cites W1978699470 @default.
- W2055604456 cites W1983703670 @default.
- W2055604456 cites W1989647873 @default.
- W2055604456 cites W2002777547 @default.
- W2055604456 cites W2007105153 @default.
- W2055604456 cites W2007596578 @default.
- W2055604456 cites W2010343859 @default.
- W2055604456 cites W2011501366 @default.
- W2055604456 cites W2012887797 @default.
- W2055604456 cites W2018413669 @default.
- W2055604456 cites W2020803911 @default.
- W2055604456 cites W2022815210 @default.
- W2055604456 cites W2024226723 @default.
- W2055604456 cites W2027209394 @default.
- W2055604456 cites W2027642790 @default.
- W2055604456 cites W2029464449 @default.
- W2055604456 cites W2039872199 @default.
- W2055604456 cites W2043890424 @default.
- W2055604456 cites W2045916683 @default.
- W2055604456 cites W2047015332 @default.
- W2055604456 cites W2048813265 @default.
- W2055604456 cites W2053742325 @default.
- W2055604456 cites W2054328333 @default.
- W2055604456 cites W2057810794 @default.
- W2055604456 cites W2059653811 @default.
- W2055604456 cites W2064642826 @default.
- W2055604456 cites W2066998078 @default.
- W2055604456 cites W2069499712 @default.
- W2055604456 cites W2073023578 @default.
- W2055604456 cites W2073369132 @default.
- W2055604456 cites W2075789958 @default.
- W2055604456 cites W2076625652 @default.
- W2055604456 cites W2078416236 @default.
- W2055604456 cites W2080271111 @default.
- W2055604456 cites W2096773693 @default.
- W2055604456 cites W2100706966 @default.
- W2055604456 cites W2107360734 @default.
- W2055604456 cites W2110531414 @default.
- W2055604456 cites W2117227715 @default.
- W2055604456 cites W2122005119 @default.
- W2055604456 cites W2145159677 @default.
- W2055604456 cites W2145754707 @default.
- W2055604456 cites W2150086084 @default.
- W2055604456 cites W2154017766 @default.
- W2055604456 cites W2155719904 @default.
- W2055604456 cites W2169766597 @default.
- W2055604456 cites W2171092257 @default.
- W2055604456 cites W2213808876 @default.
- W2055604456 cites W4232618066 @default.
- W2055604456 doi "https://doi.org/10.1016/j.chemgeo.2010.11.010" @default.
- W2055604456 hasPublicationYear "2011" @default.
- W2055604456 type Work @default.
- W2055604456 sameAs 2055604456 @default.
- W2055604456 citedByCount "306" @default.
- W2055604456 countsByYear W20556044562012 @default.
- W2055604456 countsByYear W20556044562013 @default.
- W2055604456 countsByYear W20556044562014 @default.
- W2055604456 countsByYear W20556044562015 @default.
- W2055604456 countsByYear W20556044562016 @default.
- W2055604456 countsByYear W20556044562017 @default.
- W2055604456 countsByYear W20556044562018 @default.
- W2055604456 countsByYear W20556044562019 @default.
- W2055604456 countsByYear W20556044562020 @default.
- W2055604456 countsByYear W20556044562021 @default.
- W2055604456 countsByYear W20556044562022 @default.
- W2055604456 countsByYear W20556044562023 @default.
- W2055604456 crossrefType "journal-article" @default.
- W2055604456 hasAuthorship W2055604456A5021638214 @default.
- W2055604456 hasAuthorship W2055604456A5041873183 @default.
- W2055604456 hasAuthorship W2055604456A5065458373 @default.
- W2055604456 hasBestOaLocation W20556044562 @default.
- W2055604456 hasConcept C127313418 @default.
- W2055604456 hasConcept C151730666 @default.
- W2055604456 hasConcept C17409809 @default.
- W2055604456 hasConcept C199289684 @default.
- W2055604456 hasConcept C26687426 @default.
- W2055604456 hasConcept C2776212575 @default.
- W2055604456 hasConcept C2777746296 @default.
- W2055604456 hasConcept C2778849375 @default.
- W2055604456 hasConcept C2780049196 @default.
- W2055604456 hasConcept C42787717 @default.
- W2055604456 hasConcept C63376196 @default.