Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055681053> ?p ?o ?g. }
- W2055681053 endingPage "407" @default.
- W2055681053 startingPage "399" @default.
- W2055681053 abstract "EpilepsiaVolume 38, Issue 4 p. 399-407 Free Access GABA and Epileptogenesis Richard W. Olsen, Corresponding Author Richard W. Olsen Department of Molecular & Medical Pharmacology, UCLA School of Medicine, Los Angeles, California, U.S.A.Address correspondence and reprint requests to Dr. R. W. Olsen at DeDartment of Molecular & Medical Pharmacology. UCLA School of Medicine, CHS 23–120, Los Angeles, CA 90095–1735, U.S.A.Search for more papers by this authorMassimo Avoli, Massimo Avoli Montreal Neurological Institute and Departments of Neurology & Neurosurgery and Physiology, McGill University, Montreal, Quebec, CanadaSearch for more papers by this author Richard W. Olsen, Corresponding Author Richard W. Olsen Department of Molecular & Medical Pharmacology, UCLA School of Medicine, Los Angeles, California, U.S.A.Address correspondence and reprint requests to Dr. R. W. Olsen at DeDartment of Molecular & Medical Pharmacology. UCLA School of Medicine, CHS 23–120, Los Angeles, CA 90095–1735, U.S.A.Search for more papers by this authorMassimo Avoli, Massimo Avoli Montreal Neurological Institute and Departments of Neurology & Neurosurgery and Physiology, McGill University, Montreal, Quebec, CanadaSearch for more papers by this author First published: 03 August 2005 https://doi.org/10.1111/j.1528-1157.1997.tb01728.xCitations: 191AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL REFERENCES 1 Olsen RW, Wamsley JK, Lee R, Lomax P. Benzodiazepine/ barbiturate/GABA receptor-chloride ionophore complex in a genetic model for generalized epilepsy. In: AV Delgado-Escueta, AA Ward, DM Woodbury, eds. Basic mechanisms of the epilepsies. New York : Raven Press, 1986: 365– 78. 2 Bradford HF. Glutamate, GABA and epilepsy. Prog Neurobiol 1995; 47: 477– 511. 3 Krnjevic K. Significance of GABA in brain function. In: G Tunnicliff, BU Raess, eds. GABA mechanisms in epilepsy. New York : Wiley-Liss, 1991: 47– 87. 4 Macdonald RL, Olsen RW. GABAA A receptor channels. Annu Rev Neurosci 1994; 17: 569– 602. 5 Whiting PJ, McKernan RM, Wafford KA. Structure and pharmacology of vertebrate GABAA receptor subtypes. Int Rev Neurobiol 1995; 38: 95– 138. 6 Lüddens H, Korpi ER, Seeburg PH. GABAA A /benzodiazepine receptor heterogeneity: neurophysiological implications. Neuropharmacology 1995; 34: 245– 54. 7 Pbam TM, Lacaille JC. Multiple postsynaptic actions of GABA via GABAB receptors on CA1 pyramidal cells of rat hippocampal slices. J Neurophysiol 1986; 76: 69– 80. 8 Bormann J. Electrophysiology of GABAA and GABAA receptor subtypes. Trends Neurosci 1988; 11: 112– 6. 9 Lacaille JC. Postsynaptic potentials mediated by excitatory and inhibitory amino acids in intemeurons of stratum pyramidale of the Cal region of rat hippocampal slices in vitro. J Neurophysiol 1991; 66: 1441– 54. 10 Thompson SM, Capogna M, Scanziani M. Presynaptic inhibition in the hippocampus. Trends Neurosci 1993; 16: 222– 7. 11 Mody I, DeKoninck Y, Otis TS, Soltesz I. Bridging the cleft at GABA synapses in the brain. Trends Neurosci 1994; 17: 517– 25. 12 Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol (Lond) 1989; 416: 303– 5. 13 Michelson HB, Wong RKS. Excitatory synaptic responses mediated by GABAA receptors in the hippocampus. Science 1991; 253: 1420– 3. 14 Kaila K, Voipio J, Paalasmaa P, Pasternack M, Deisz RA. The role of bicarbonate in GABAA receptor-mediated IPSPs of rat neocortical neurones. J Physiol (Lond) 1993; 464: 273– 89. 15 Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 1995; 269: 977– 81. 16 Haglund MM, Schwartzkroin PA. Role of Na-K pump potassium regulation and IPSPs in seizures and spreading depression in immature rabbit hippocampal slices. J Neurophysiol 1990; 63: 225– 39. 17 Luhman HJ, Prince DA. Postnatal maturation of the GABAergic system in rat neocortex. J Neurophysiol 1991; 65: 247– 53. 18 Strata F, Cherubini E. Transient expression of a novel type of GABA response in rat CA3 hippocampal neurones during development. J Physiol (Lond) 1994; 480: 493– 503. 19 Avoli M. GABA-mediated synchronous potentials and seizure generation. Epilepsia 1996; 37: 1035– 42. 20 Avoli M, Barbarosie M, Liicke A, Nagao I, Lopantsev V, Kohling R. Synchronous GABA-mediated potentials and epileptiform discharges in the rat limbic system in vitro. J Neurosci 1996; 16: 3912– 24. 21 Avoli M, Louvel J, Kurcewicz I, Pumain R, Barbarosie M. Extracellular free potassium and calcium during synchronous activity induced by 4–aminopyridine in the juvenile rat hippocampus. J Physiol (Lond) 1996; 493.3: 707– 17. 22 Stasheff SF, Hines M, Wilson WA. Axon terminal hyperexcitabil-ity associated with epileptogenesis in vitro. I. Origin of ectopic spikes. J Neurophysiol 1993; 70: 961– 75. 23 Snead OC III. Basic mechanisms of generalized absence seizures. Ann Neurol 1995; 37: 146– 57. 24 Huguenard JR, Prince DA. Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects. J Neurosci 1994; 14: 5485– 502. 25 Marescaux C, Vergnes M, Depaulis A. A genetic absence epilepsy in rats from Strasbourg–a review. J Neural Transm [Supp] 1992; 35: 37– 70. 26 Hosford DA, Lin F, Kraemer DL, Cao Z, Wang Y, Wilson JT. Neural network of structures in which GABAA receptors regulate seizures in the lethargic (Ih/lh) mouse model. J Neurosci 1995; 15: 7367– 76. 27 Coulter DA, Huguenard JR, Prince DA. Cellular actions of petit ma1 anticonvulsants: Imulications of thalamic low-threshold calcium channels in generation of spike-wave discharge. In: M Avoli, P Gloor, G Kostopoluos, R Naquet, eds. Generalized epilepsy: neurobiological approaches. Basel : Birkhauser, 1990: 425– 35. 28 Banerjee PK, Tillakaratne N, Brailowsky S, Olsen RW, Snead OC, Tobin AJ. The expression of GABA, receptor α4 subunit mRNA in the thalamus is altered during γ-hydroxybutyric acid (GHB). induced absence-like seizures in rats: an in situ hybridization study [Abstract 624,18]. Soc Neurosci Abstr 1995; 21: 1592. 29 Huguenard JR, Prince DA. Clonazepam suppresses GABA-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. J Neurophysiol 1994; 71: 2576– 81. 30 Gyenes M, Farrant M, Farb, DH. “Run-down” of GABAA receptor function during whole-cell recording: a possible role for phosphorylation. Mol Phamcol 1988; 34: 719– 23. 31 Chen QX, Stelzer A, Kay AR, Wong RKS. GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea pig neurones. J Physiol (Lond) 1990; 420: 207– 21. 32 Frosch MP, Lipton SA, Dichter MA. Desensitization of GABA-activated currents and channels in cultured cortical neurons. J Neurosci 1992; 12: 3042– 53. 33 Pitler TA, Alger BE. Depolarization-induced suppression of GABAergic inhibition in rat hippocampal pyramidal cells: G protein involvement in a presynaptic mechanism. Neuron 1994; 13: 1447– 55. 34 Olsen RW, DeLorey TM, Gordey M, Kang MH. GABA receptor function and epilepsy. In: AV Delgado-Escueta, WA Wilson, RW Olsen, RM Porter, eds. Basic mechanisms of the epilepsies, New York : Lippincott-Raven, 1997 (in press). 35 Brailowsky S, Kunimoto M, Menini C, Silba-Barrat, S, Riche D, Naquet TR. The GABA-withdrawal syndrome: a new model of focal epileptogenesis. Brain Res 1988; 442: 175– 9. 36 Treiman DM. Treatment of alcohol withdrawal seizures with benzodiazepines: clinical applications. In: RJ Porter, RH Mattson, JA Cramer, I Diamond, DG Schoenberg, eds, Alcohol and seizures: basic mechanisms and clinical concepts. Philadelphia : F.A. Davis, 1990: 283– 9. 37 Kokka N, Sapp DW, Taylor AN, Olsen RW. The kindling model of alcohol dependence: similar persistent reduction in seizure threshold to pentylenetetrazol in animals receiving chronic ethanol or chronic pentylenetetrazol. Alcoholism Clin Exp Res 1993; 17: 525– 31. 38 Kang M, Spigelman I, Sapp DW, Olsen RW. Persistent reduction of GABAA receptor mediated inhibition in rat hippocampus after chronic intermittent ethanol treatment. Brain Res 1996; 709: 221– 8. 39 Calkin PA, Barnes, EM. GABAA agonists down-regulate GABAA/benzodiazepine receptor polypeptides from the surface of chick cortical neurons. J Biol Chem 1994: 269: 1548– 53. 40 Mhatre M. Ticku MK. Chronic ethanol administration alters GABAA receptor gene expression. Mol Pharmacol 1992; 42: 415– 22. 41 Tietz EI, Huang X, Weng, X, Rosenberg HC, Chiu TH. Expression of α1, α5, and γ2 GABAA receptor subunit mRNAs measured in situ in rat hippocampus and cortex following chronic flurazepam administration. J Mol Neurosci 1993; 4: 277– 92. 42 Devaud LL, Smith FD, Grayson DR, Morrow AL. Chronic ethanol consumption differentially alters the expression of GABAA receptor subunit mRNAs in rat cerebral cortex: competitive, quantitative RTPCR analysis. Mol Pharmacol 1995; 48: 861– 8. 43 Costa E, Guidotti A. Benzodiazepines on trial: a research strategy for their rehabilitation. Trends Pharmacol Sci 1996; 17: 192– 200. 44 Roca DJ, Scbiller GD, Friedman L, Rozenburg I, Gibbs TT, Farb DH. GABAA receptor regulation in culture: altered allosteric interactions following prolonged exposure to benzodiazepines, barbiturates and methylxanthines. Mol Pharmacol 1990; 37: 710– 9. 45 Primus RJ, Yu J, Xu J, et al. Allosteric uncoupling after chronic benzodiazepine exposure of recombinant GABAA receptors expressed in Sf9 cells: ligand efficacy and subtype selectivity. J Pharmacol Exp Ther 1996; 276: 510– 7. 46 Kang MH, Mahmoudi M, Tillakaratne N, Tobin AJ, Olsen RW. Increased a4 subunit mRNA and increased steroid modulation of benzodiazepine binding to GABA receptors in rats treated with chronic intermittent ethanol [Abstract 814.1]. Soc Neurosci Abstr 1996; 22: 2074. 47 Yu R, Ticku MK. Chronic neurosteroid treatment produces functional heterologous uncoupling at the GABAA A/benzodiazepine receptor complex in mammalian cortical neurons. Mol Pharmacol 1995; 47: 603– 10. 48 Devaud LL, Purdy RH, Finn DA, Morrow, AL. Sensitization of GABAA receptors to neuroactive steroid in rats during ethanol withdrawal. J Pharmacol Exp Ther 1996; 278: 510– 7. 49 Barbaccia ML, Roscetti G, Trabucchi M, et al. Time-dependent changes in rat brain neuroactive steroid concentrations and GABAA receptor function after acute stress. Neuroendocrinology 1996; 63: 166– 72. 50 Clark M, Massenburg GS, Weiss SRB, Post RM. Analysis of the hippocampal GABAA receptor system in kindled rats by autoradiographic and in situ hybridization techniques: contingent tolerance to carbamazepine. Mol Brain Res 1994; 26: 309– 19. 51 Kampbuis W, DeRijk TC, Lopes da Silva PH. Expression of GABAA receptor subunit mRNA in hippocampal pyramidal and granule neurons in the kindling model of epileptogenesis: an in situ hybridization study. Mol Brain Res 1995; 31: 33– 47. 52 E Roberts, TN Chase, DB Tower, eds. GABA in nervous system function. New York : Raven Press, 1976. 53 Rise ML, Frankel WN, Coffin JM, Seyfried TN. Genes for epilepsy mapped in the mouse. Science 1991; 253: 669– 73. 54 Frankel WN, Taylor BA, Noebels JL, Lutz CM. Genetic epilepsy model derived from common inbred mouse strains. Genetics 1994; 138: 481– 9. 55 Nakatsu Y, Tyndale RF, DeLorey TM, et al. A cluster of three GABAA receptor subunit genes is deleted in a neurological mutant of the mouse p locus. Nature 1993; 364: 448– 50. 56 DeLorey TM, Minassian B, Tyndale R, OIsen RW. Does the GABAA receptor have a role to play in Angelman syndrome? In: C Tanaka, N Bowery, eds. GABA: receptors, transporters and metabolism. Basel : Birkhauser, 1996: 275– 82. 57 Minassian BA, DeLorey T, Olsen RW, et al. GABRB3: a gene involved in the epilepsy of Angelman syndrome (AS)? [Abstract]. 5781. Am J Hum Genet 1996; 59 (suppl): A273. 58 Noebels JL. Targeting epilepsy genes. Neuron 1996; 16: 241– 4. 59 McDonald J, Garofala E, Hood T, et al. Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy. Ann Neurol 1991; 29: 529– 41. 60 Johnson EW, DeLanerolle NC, Kim JH, et al. Central and peripheral benzodiazepine receptors: opposite changes in human epileptogenic tissue. Neurology 1992; 42: 811– 5. 61 Olsen RW, Bureau M, Houser CR, Delgado-Escueta AV, Richards JG, Mohler H. GABA-benzodiazepine receptors in human focal epilepsy. Epilepsy Res 1992; suppl 8: 389– 97. 62 Savic I, Roland P, Sedvall F. Persson A, Pauli S, Widen L. In vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988; October 15: 863– 6. 63 Henry TR, Frey KA, Sackellares JC, et al. In vivo cerebral metabolism and central benzodiazepine receptor binding in temporal lobe epilepsy. Neurology 1993; 43: 1998– 2006. 64 Van Ness PC, Awad IA, Estes M, Nguyen Q. Olsen RW. Neurosteroid modulation of benzodiazepine binding to neocortical GABAA receptors in human focal epilepsy varies with pathology [Abstract 597.5]. Soc Neurosci Abstr 1995; 21: 1516. 65 Olsen RW, Houser CR, Makela R, Delgado-Escueta AV. Altered GABA-A receptor subtype-specific and allosteric binding properties in neocortex resected from focal epilepsy tissue associated with severe hippocampal pathology and sprouting [Abstract 597.12] Soc Neurosci Abstr 1995; 21: 1517. 66 Avoli M, Williamson A. Functional and pharmacological properties of human neocortical neurons maintained in vitro. Prog Neurobiol 1996; 48: 519– 54. 67 Babb TL, Pretorius JK, Kupfer WR, Crandall PH. Glutamate de-carboxylase-irnmunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci 1989; 9: 2562– 74. 68 Houser CR, Miyashiro JE, Swartz BE, Walsh GO, Rich JR, Delgado-Escueta AV. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 1990; 10: 267– 82. 69 Houser CR, Swartz BE, Walsh GO, Delgado-Escueta AV. Granule cell disorganization in the dentate gyrus: possible alterations in neuronal migration in human temporal lobe epilepsy. Epilepsy Res 1992;suppl 9: 41– 9. 70 Sloviter RS. Permanently altered hippocampus structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1991; 1: 41– 66. 71 Cavazos JE, Golarai G, Sutula TP. Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. J Neurosci 1991; 11: 2795– 803. 72 Cronin J, Obenaus A, Houser CR, Dudek FE. Electrophysiology of dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers. Brain Res 1992: 573: 305– 10. 73 Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 1991; 32: 778– 82. 74 Obenaus A, Esclapez M, Houser CR. Loss of glutamate decarbox-ylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures. J Neurosci 1993; 13: 4470– 85. 75 Shin C, Pedersen HB, McNamara JO. GABA and benzodiazepine receptors in the kindling model of epilepsy: a quantitative radio-histochemical study. J Neurosci 1985; 5: 2696– 701. 76 Otis TS, DeKoninck Y, Mody I. Lasting potentiation of inhibition is associated with an increased number of GABAA receptors activated during miniature inhibitory postsynaptic currents. Proc Natl Acad Sci USA 1994; 91: 7698– 702. 77 Buhl EH, Otis TS, Mody I. Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 1996; 271: 369– 73. 78 Houser CR, Esclapez M, Fritschy JM, Möhler H. Decreased expression of the gka5 subunit of the GABAA receptor in a model of temporal lobe epilepsy [Abstract 576.3]. Soc Neurosci Abstr 1995; 21: 1475. 79 Rice A, Rafiq A, Shapiro SM, Jakoi ER, Coulter DA, DeLorenzo RJ. Long-lasting reduction of inhibitory function and GABAA receptor subunit mRNA expression in a model of temporal lobe epilepsy. Proc Natl Acad Sci USA 1996; 93: 9665– 9. 80 White HS. Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs. Epilepsia 1997 (in press). 81 McCabe RT, Wasterlain CG, Kucharczyk N, et al. Evidence for anticonvulsant and neuroprotective action of felbamate mediated by strychnine-insensitive glycine receptors. J Pharmacol Exp Ther 1993; 264: 1248– 52. 82 Rho JM, Donevan SD, Rogawski MA. Mechanism of action of anticonvulsant felbamate: opposing effects on NMDA and GABAA receptors. Ann Neurol 1994; 35: 229– 34. 83 Belelli D, Bolger MB, Gee KW. Anticonvulsant profile of the progesterone metabolite 5a-pregnan-3a-o1–20–one. Eur J Pharmacol 1989; 166: 325– 9. 84 Kokate TG, Svensson BE, Rogawski MA. Anticonvulsant activity of neurosteroids: correlation with GABA-evoked chloride current potentiation. J Pharmacol Exp Ther 1994; 270: 1223– 9. 85 Holland KD, McKeon AC, Canney DJ, Covey DF, Ferrendelli JA. Relative anticonvulsant effects of GABAmimetic and GABA modulatory agents. Epilepsia 1992; 33: 981– 6. Citing Literature Volume38, Issue4April 1997Pages 399-407 ReferencesRelatedInformation" @default.
- W2055681053 created "2016-06-24" @default.
- W2055681053 creator A5032087424 @default.
- W2055681053 creator A5066912472 @default.
- W2055681053 date "1997-04-01" @default.
- W2055681053 modified "2023-10-16" @default.
- W2055681053 title "GABA and Epileptogenesis" @default.
- W2055681053 cites W1548516628 @default.
- W2055681053 cites W1563037009 @default.
- W2055681053 cites W1574757902 @default.
- W2055681053 cites W165635918 @default.
- W2055681053 cites W1827373965 @default.
- W2055681053 cites W1831407150 @default.
- W2055681053 cites W1856380311 @default.
- W2055681053 cites W1860455432 @default.
- W2055681053 cites W1944731016 @default.
- W2055681053 cites W1971931358 @default.
- W2055681053 cites W1986910593 @default.
- W2055681053 cites W1988358396 @default.
- W2055681053 cites W1991905988 @default.
- W2055681053 cites W1995441615 @default.
- W2055681053 cites W1996033662 @default.
- W2055681053 cites W1997047517 @default.
- W2055681053 cites W1997667725 @default.
- W2055681053 cites W1998952799 @default.
- W2055681053 cites W2005492539 @default.
- W2055681053 cites W2013477495 @default.
- W2055681053 cites W2016943305 @default.
- W2055681053 cites W2021401120 @default.
- W2055681053 cites W2024328209 @default.
- W2055681053 cites W2025093063 @default.
- W2055681053 cites W2030602458 @default.
- W2055681053 cites W2040494803 @default.
- W2055681053 cites W2041726742 @default.
- W2055681053 cites W2049594669 @default.
- W2055681053 cites W2050105359 @default.
- W2055681053 cites W2050659941 @default.
- W2055681053 cites W2064150096 @default.
- W2055681053 cites W2068507111 @default.
- W2055681053 cites W2071446928 @default.
- W2055681053 cites W2075723143 @default.
- W2055681053 cites W2077468380 @default.
- W2055681053 cites W2078333644 @default.
- W2055681053 cites W2081317561 @default.
- W2055681053 cites W2082956732 @default.
- W2055681053 cites W2084243951 @default.
- W2055681053 cites W2084672354 @default.
- W2055681053 cites W2087291581 @default.
- W2055681053 cites W2089846552 @default.
- W2055681053 cites W2102391630 @default.
- W2055681053 cites W2104685361 @default.
- W2055681053 cites W2104766969 @default.
- W2055681053 cites W2109746889 @default.
- W2055681053 cites W2115466563 @default.
- W2055681053 cites W2123307057 @default.
- W2055681053 cites W2126578880 @default.
- W2055681053 cites W2136440978 @default.
- W2055681053 cites W2143316425 @default.
- W2055681053 cites W2144542072 @default.
- W2055681053 cites W2146434628 @default.
- W2055681053 cites W2169533599 @default.
- W2055681053 cites W2183110317 @default.
- W2055681053 cites W2285208598 @default.
- W2055681053 cites W2343448033 @default.
- W2055681053 cites W2409505568 @default.
- W2055681053 cites W4319308579 @default.
- W2055681053 cites W4322701228 @default.
- W2055681053 doi "https://doi.org/10.1111/j.1528-1157.1997.tb01728.x" @default.
- W2055681053 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9118844" @default.
- W2055681053 hasPublicationYear "1997" @default.
- W2055681053 type Work @default.
- W2055681053 sameAs 2055681053 @default.
- W2055681053 citedByCount "254" @default.
- W2055681053 countsByYear W20556810532012 @default.
- W2055681053 countsByYear W20556810532013 @default.
- W2055681053 countsByYear W20556810532014 @default.
- W2055681053 countsByYear W20556810532015 @default.
- W2055681053 countsByYear W20556810532016 @default.
- W2055681053 countsByYear W20556810532017 @default.
- W2055681053 countsByYear W20556810532018 @default.
- W2055681053 countsByYear W20556810532019 @default.
- W2055681053 countsByYear W20556810532020 @default.
- W2055681053 countsByYear W20556810532021 @default.
- W2055681053 countsByYear W20556810532022 @default.
- W2055681053 countsByYear W20556810532023 @default.
- W2055681053 crossrefType "journal-article" @default.
- W2055681053 hasAuthorship W2055681053A5032087424 @default.
- W2055681053 hasAuthorship W2055681053A5066912472 @default.
- W2055681053 hasBestOaLocation W20556810531 @default.
- W2055681053 hasConcept C15744967 @default.
- W2055681053 hasConcept C169760540 @default.
- W2055681053 hasConcept C2778186239 @default.
- W2055681053 hasConcept C2992477034 @default.
- W2055681053 hasConcept C57236427 @default.
- W2055681053 hasConcept C71924100 @default.
- W2055681053 hasConceptScore W2055681053C15744967 @default.
- W2055681053 hasConceptScore W2055681053C169760540 @default.
- W2055681053 hasConceptScore W2055681053C2778186239 @default.