Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055761364> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2055761364 abstract "Kertas kerja ini menerangkan mengenai kegunaan jaringan neural tiruan (ANN) untuk mengesan dan membaiki kesilapan dalam loji proses. Dalam penyelidikan ini, ANN menggunakan dua lapisan dalam strategi diagnostik hirarki. Lapisan pertama mengenal pasti nod di mana kesilapan bermula sementara lapisan kedua membahagikan kesilapan yang berlaku pada nod tertentu. Arkitek model ANN adalah berasaskan beberapa lapisan rangkaian suapan hadapan dan menggunakan algoritma luncuran belakang dalam skema latihan. Untuk mendapatkan konfigurasi ANN yang terbaik, analisis topologi dilakukan. Keberkesanan kaedah ini ditunjukkan oleh kajian kes melibatkan turus pemecahan asid lemak. Keputusan menunjukkan sistem ini berjaya mengesan kesilapan tunggal dan fana yang terdapat dalam proses tersebut. Kata kunci: Pengenalpastian dan diagnostik kesilapan proses, strategi diagnostik hirarki, jaringan neural tiruan, turus pemecahan asid lemak This paper focuses on the use of artificial neural network (ANN) to detect and diagnose fault in process plant. In this work, the ANN uses two layers of hierarchical diagnostic strategy. The first layer diagnoses the node where the fault originated and the second layer classifies the type of faults or malfunctions occurred on that particular node. The architecture of the ANN model is founded on a multilayer feed forward network and used back propagation algorithm as the training scheme. In order to find the most suitable configuration of ANN, a topology analysis is conducted. The effectiveness of the method is demonstrated by using a fatty acid fractionation column. Results show that the system is successful in detecting original single and transient fault introduced within the process plant model. Key words: Process fault detection and diagnosis, hierarchical diagnostic strategy, artificial neural network, fatty acid fractionation column" @default.
- W2055761364 created "2016-06-24" @default.
- W2055761364 creator A5038005238 @default.
- W2055761364 creator A5038816553 @default.
- W2055761364 creator A5086786759 @default.
- W2055761364 date "2012-01-20" @default.
- W2055761364 modified "2023-10-12" @default.
- W2055761364 title "Process Fault Detection Using Hierarchical Artificial Neural Network Diagnostic Strategy" @default.
- W2055761364 cites W155452813 @default.
- W2055761364 cites W1585293561 @default.
- W2055761364 cites W1977497916 @default.
- W2055761364 cites W2073526729 @default.
- W2055761364 cites W2075099466 @default.
- W2055761364 cites W2114649704 @default.
- W2055761364 cites W2135663228 @default.
- W2055761364 cites W2147912439 @default.
- W2055761364 cites W2644408580 @default.
- W2055761364 cites W2914259485 @default.
- W2055761364 cites W2200110935 @default.
- W2055761364 doi "https://doi.org/10.11113/jt.v46.301" @default.
- W2055761364 hasPublicationYear "2012" @default.
- W2055761364 type Work @default.
- W2055761364 sameAs 2055761364 @default.
- W2055761364 citedByCount "3" @default.
- W2055761364 countsByYear W20557613642016 @default.
- W2055761364 countsByYear W20557613642020 @default.
- W2055761364 crossrefType "journal-article" @default.
- W2055761364 hasAuthorship W2055761364A5038005238 @default.
- W2055761364 hasAuthorship W2055761364A5038816553 @default.
- W2055761364 hasAuthorship W2055761364A5086786759 @default.
- W2055761364 hasBestOaLocation W20557613641 @default.
- W2055761364 hasConcept C111919701 @default.
- W2055761364 hasConcept C127313418 @default.
- W2055761364 hasConcept C127413603 @default.
- W2055761364 hasConcept C154945302 @default.
- W2055761364 hasConcept C165205528 @default.
- W2055761364 hasConcept C175551986 @default.
- W2055761364 hasConcept C41008148 @default.
- W2055761364 hasConcept C50644808 @default.
- W2055761364 hasConcept C62611344 @default.
- W2055761364 hasConcept C66938386 @default.
- W2055761364 hasConcept C98045186 @default.
- W2055761364 hasConceptScore W2055761364C111919701 @default.
- W2055761364 hasConceptScore W2055761364C127313418 @default.
- W2055761364 hasConceptScore W2055761364C127413603 @default.
- W2055761364 hasConceptScore W2055761364C154945302 @default.
- W2055761364 hasConceptScore W2055761364C165205528 @default.
- W2055761364 hasConceptScore W2055761364C175551986 @default.
- W2055761364 hasConceptScore W2055761364C41008148 @default.
- W2055761364 hasConceptScore W2055761364C50644808 @default.
- W2055761364 hasConceptScore W2055761364C62611344 @default.
- W2055761364 hasConceptScore W2055761364C66938386 @default.
- W2055761364 hasConceptScore W2055761364C98045186 @default.
- W2055761364 hasLocation W20557613641 @default.
- W2055761364 hasOpenAccess W2055761364 @default.
- W2055761364 hasPrimaryLocation W20557613641 @default.
- W2055761364 hasRelatedWork W1686174011 @default.
- W2055761364 hasRelatedWork W1888328219 @default.
- W2055761364 hasRelatedWork W189781652 @default.
- W2055761364 hasRelatedWork W1971540323 @default.
- W2055761364 hasRelatedWork W1997751152 @default.
- W2055761364 hasRelatedWork W2018069354 @default.
- W2055761364 hasRelatedWork W2024946334 @default.
- W2055761364 hasRelatedWork W2033615461 @default.
- W2055761364 hasRelatedWork W2060323556 @default.
- W2055761364 hasRelatedWork W2063688897 @default.
- W2055761364 hasRelatedWork W2074115118 @default.
- W2055761364 hasRelatedWork W2113277050 @default.
- W2055761364 hasRelatedWork W2165079122 @default.
- W2055761364 hasRelatedWork W231907065 @default.
- W2055761364 hasRelatedWork W2514968141 @default.
- W2055761364 hasRelatedWork W3183882890 @default.
- W2055761364 hasRelatedWork W111691059 @default.
- W2055761364 hasRelatedWork W1477307081 @default.
- W2055761364 hasRelatedWork W2249989806 @default.
- W2055761364 hasRelatedWork W2505918486 @default.
- W2055761364 isParatext "false" @default.
- W2055761364 isRetracted "false" @default.
- W2055761364 magId "2055761364" @default.
- W2055761364 workType "article" @default.