Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055852904> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2055852904 endingPage "18" @default.
- W2055852904 startingPage "1" @default.
- W2055852904 abstract "The boxicity (resp. cubicity) of a graph G ( V , E ) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (resp. cubes) in R k . Equivalently, it is the minimum number of interval graphs (resp. unit interval graphs) on the vertex set V , such that the intersection of their edge sets is E . The problem of computing boxicity (resp. cubicity) is known to be inapproximable, even for restricted graph classes like bipartite, co-bipartite and split graphs, within an O ( n 1 − ε ) -factor for any ε > 0 in polynomial time, unless N P = Z P P . For any well known graph class of unbounded boxicity, there is no known approximation algorithm that gives n 1 − ε -factor approximation algorithm for computing boxicity in polynomial time, for any ε > 0 . In this paper, we consider the problem of approximating the boxicity (cubicity) of circular arc graphs—intersection graphs of arcs of a circle. Circular arc graphs are known to have unbounded boxicity, which could be as large as Ω ( n ) . We give a ( 2 + 1 k ) -factor ( resp. ( 2 + ⌈ log n ⌉ k ) - factor ) polynomial time approximation algorithm for computing the boxicity (resp. cubicity) of any circular arc graph, where k ≥ 1 is the value of the optimum solution. For normal circular arc (NCA) graphs, with an NCA model given, this can be improved to an additive two approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity (resp. cubicity) is O ( m n + n 2 ) in both these cases, and in O ( m n + k n 2 ) = O ( n 3 ) time we also get their corresponding box (resp. cube) representations, where n is the number of vertices of the graph and m is its number of edges. Our additive two approximation algorithm directly works for any proper circular arc graph, since their NCA models can be computed in polynomial time." @default.
- W2055852904 created "2016-06-24" @default.
- W2055852904 creator A5019703184 @default.
- W2055852904 creator A5024359075 @default.
- W2055852904 creator A5060231651 @default.
- W2055852904 date "2014-12-01" @default.
- W2055852904 modified "2023-09-28" @default.
- W2055852904 title "A constant factor approximation algorithm for boxicity of circular arc graphs" @default.
- W2055852904 cites W12802409 @default.
- W2055852904 cites W1500561220 @default.
- W2055852904 cites W1502166895 @default.
- W2055852904 cites W1546553618 @default.
- W2055852904 cites W161777220 @default.
- W2055852904 cites W1956452579 @default.
- W2055852904 cites W1971244706 @default.
- W2055852904 cites W1973094571 @default.
- W2055852904 cites W1973275449 @default.
- W2055852904 cites W1974366154 @default.
- W2055852904 cites W1977889556 @default.
- W2055852904 cites W1980392938 @default.
- W2055852904 cites W2003154502 @default.
- W2055852904 cites W2005349020 @default.
- W2055852904 cites W2005791424 @default.
- W2055852904 cites W2009945076 @default.
- W2055852904 cites W2019830026 @default.
- W2055852904 cites W2027388354 @default.
- W2055852904 cites W2033470072 @default.
- W2055852904 cites W2034198559 @default.
- W2055852904 cites W2041949666 @default.
- W2055852904 cites W2047899424 @default.
- W2055852904 cites W2060011719 @default.
- W2055852904 cites W2063227364 @default.
- W2055852904 cites W2074937107 @default.
- W2055852904 cites W2085486788 @default.
- W2055852904 cites W2091388992 @default.
- W2055852904 cites W2106120818 @default.
- W2055852904 cites W2107613637 @default.
- W2055852904 cites W21133947 @default.
- W2055852904 cites W2132816737 @default.
- W2055852904 cites W2134744951 @default.
- W2055852904 cites W2155577291 @default.
- W2055852904 doi "https://doi.org/10.1016/j.dam.2014.06.013" @default.
- W2055852904 hasPublicationYear "2014" @default.
- W2055852904 type Work @default.
- W2055852904 sameAs 2055852904 @default.
- W2055852904 citedByCount "0" @default.
- W2055852904 crossrefType "journal-article" @default.
- W2055852904 hasAuthorship W2055852904A5019703184 @default.
- W2055852904 hasAuthorship W2055852904A5024359075 @default.
- W2055852904 hasAuthorship W2055852904A5060231651 @default.
- W2055852904 hasBestOaLocation W20558529041 @default.
- W2055852904 hasConcept C11413529 @default.
- W2055852904 hasConcept C114614502 @default.
- W2055852904 hasConcept C118615104 @default.
- W2055852904 hasConcept C148764684 @default.
- W2055852904 hasConcept C199360897 @default.
- W2055852904 hasConcept C22251595 @default.
- W2055852904 hasConcept C2524010 @default.
- W2055852904 hasConcept C2777027219 @default.
- W2055852904 hasConcept C33923547 @default.
- W2055852904 hasConcept C41008148 @default.
- W2055852904 hasConcept C83415579 @default.
- W2055852904 hasConceptScore W2055852904C11413529 @default.
- W2055852904 hasConceptScore W2055852904C114614502 @default.
- W2055852904 hasConceptScore W2055852904C118615104 @default.
- W2055852904 hasConceptScore W2055852904C148764684 @default.
- W2055852904 hasConceptScore W2055852904C199360897 @default.
- W2055852904 hasConceptScore W2055852904C22251595 @default.
- W2055852904 hasConceptScore W2055852904C2524010 @default.
- W2055852904 hasConceptScore W2055852904C2777027219 @default.
- W2055852904 hasConceptScore W2055852904C33923547 @default.
- W2055852904 hasConceptScore W2055852904C41008148 @default.
- W2055852904 hasConceptScore W2055852904C83415579 @default.
- W2055852904 hasLocation W20558529041 @default.
- W2055852904 hasLocation W20558529042 @default.
- W2055852904 hasLocation W20558529043 @default.
- W2055852904 hasOpenAccess W2055852904 @default.
- W2055852904 hasPrimaryLocation W20558529041 @default.
- W2055852904 hasRelatedWork W1982718046 @default.
- W2055852904 hasRelatedWork W1986602944 @default.
- W2055852904 hasRelatedWork W1988901358 @default.
- W2055852904 hasRelatedWork W1989791930 @default.
- W2055852904 hasRelatedWork W2279520156 @default.
- W2055852904 hasRelatedWork W2377157165 @default.
- W2055852904 hasRelatedWork W2504958047 @default.
- W2055852904 hasRelatedWork W2805141822 @default.
- W2055852904 hasRelatedWork W3004591117 @default.
- W2055852904 hasRelatedWork W3170602412 @default.
- W2055852904 hasVolume "178" @default.
- W2055852904 isParatext "false" @default.
- W2055852904 isRetracted "false" @default.
- W2055852904 magId "2055852904" @default.
- W2055852904 workType "article" @default.