Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055872389> ?p ?o ?g. }
- W2055872389 endingPage "3511" @default.
- W2055872389 startingPage "3502" @default.
- W2055872389 abstract "Understanding the relationship between nonstoichiometry and physical properties of ultrathin oxides is of great importance from both scientific and technological aspects. A specific example includes the onset of passivity breakdown in an ultrathin oxide film in aqueous medium leading to the onset of corrosion. In this work, using the model system of ultrathin oxide of alumina on aluminum synthesized by natural oxidation and photon-assisted oxidation processes, we demonstrate a direct correlation between passivity and quality of the oxide film quantitatively. Depth-dependent high-resolution X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nuclear reaction analysis (NRA) have been performed to characterize the physical and chemical properties of the oxide films, while detailed impedance measurements and Mott−Schottky studies have been performed to understand electronic transport. Combined NRA and TEM analysis reveal an 18% increase in oxygen density (for oxide films with near identical thicknesses ∼3.8 nm) in the case of photon-assisted oxidation. The denser oxide film results in a ∼34% more blockage of chloride ions transport as indicated by XPS analysis. Mott−Schottky measurements on these oxide films indicates a 43% reduction of defect levels for UV-synthesized alumina when compared to native one, suggestive of chloride ion transport via oxygen vacancies. Additionally, molecular dynamics simulations have been performed to provide insights into the structure of the oxides at the atomic level to correlate with the experimental measurements. These simulations employ dynamic charge transfer between atoms and are used to investigate nanoscale oxides grown on Al (100) surfaces because of atomic and molecular oxygen. Oxidation using molecular and atomic oxygen resulted in an amorphous oxide scale with self-limiting thickness of ∼16 and 22 Å, respectively, at 300 K. Structural and dynamic correlations indicate significant charge transfer to exist in the oxide film in both the cases. The oxide growth in both the cases occurs due to the inward oxygen and outward cation diffusion. The calculated in-plane and out-of-plane atomic diffusivities are 40−70% higher in case of atomic oxidation. In the presence of atomic oxygen, the O/Al ratio is more uniform and varies from 1.37 at the oxide−gas interface to 1.30 at the metal−oxide interface, whereas that formed by natural oxidation was substoichiometric and oxygen deficient with O/Al values varying from 1.27 (oxide−gas interface) to 1.05 (metal−oxide interface) at room temperature. The simulation results are consistent with the reported experimental investigations." @default.
- W2055872389 created "2016-06-24" @default.
- W2055872389 creator A5002495805 @default.
- W2055872389 creator A5002729048 @default.
- W2055872389 creator A5038787347 @default.
- W2055872389 creator A5063950942 @default.
- W2055872389 creator A5066197593 @default.
- W2055872389 date "2009-02-06" @default.
- W2055872389 modified "2023-10-02" @default.
- W2055872389 title "On the Relationship between Nonstoichiometry and Passivity Breakdown in Ultrathin Oxides: Combined Depth-Dependent Spectroscopy, Mott−Schottky Analysis, and Molecular Dynamics Simulation Studies" @default.
- W2055872389 cites W1497108381 @default.
- W2055872389 cites W1565501507 @default.
- W2055872389 cites W1596628295 @default.
- W2055872389 cites W1642002462 @default.
- W2055872389 cites W1966672269 @default.
- W2055872389 cites W1968381698 @default.
- W2055872389 cites W1969639542 @default.
- W2055872389 cites W1969905112 @default.
- W2055872389 cites W1971045154 @default.
- W2055872389 cites W1972295667 @default.
- W2055872389 cites W1975470662 @default.
- W2055872389 cites W1976679893 @default.
- W2055872389 cites W1978768395 @default.
- W2055872389 cites W1979291583 @default.
- W2055872389 cites W1979297497 @default.
- W2055872389 cites W1979360395 @default.
- W2055872389 cites W1980917373 @default.
- W2055872389 cites W1983335449 @default.
- W2055872389 cites W1984792253 @default.
- W2055872389 cites W1989906370 @default.
- W2055872389 cites W1991475686 @default.
- W2055872389 cites W1994926977 @default.
- W2055872389 cites W1999216925 @default.
- W2055872389 cites W2000799665 @default.
- W2055872389 cites W2001333894 @default.
- W2055872389 cites W2001353452 @default.
- W2055872389 cites W2006009797 @default.
- W2055872389 cites W2012320483 @default.
- W2055872389 cites W2013614453 @default.
- W2055872389 cites W2014380290 @default.
- W2055872389 cites W2015132693 @default.
- W2055872389 cites W2015240911 @default.
- W2055872389 cites W2015745210 @default.
- W2055872389 cites W2016469185 @default.
- W2055872389 cites W2019468297 @default.
- W2055872389 cites W2019578222 @default.
- W2055872389 cites W2021215993 @default.
- W2055872389 cites W2023062269 @default.
- W2055872389 cites W2023158180 @default.
- W2055872389 cites W2023679097 @default.
- W2055872389 cites W2025172508 @default.
- W2055872389 cites W2026840140 @default.
- W2055872389 cites W2026936061 @default.
- W2055872389 cites W2027700146 @default.
- W2055872389 cites W2031153583 @default.
- W2055872389 cites W2031895949 @default.
- W2055872389 cites W2032916762 @default.
- W2055872389 cites W2034385863 @default.
- W2055872389 cites W2039978619 @default.
- W2055872389 cites W2042798550 @default.
- W2055872389 cites W2056124034 @default.
- W2055872389 cites W2057653685 @default.
- W2055872389 cites W2060399547 @default.
- W2055872389 cites W2065402055 @default.
- W2055872389 cites W2067117439 @default.
- W2055872389 cites W2067896295 @default.
- W2055872389 cites W2068370411 @default.
- W2055872389 cites W2073723482 @default.
- W2055872389 cites W2074409595 @default.
- W2055872389 cites W2077017393 @default.
- W2055872389 cites W2082045986 @default.
- W2055872389 cites W2083382215 @default.
- W2055872389 cites W2085059741 @default.
- W2055872389 cites W2087154385 @default.
- W2055872389 cites W2089197684 @default.
- W2055872389 cites W2091071929 @default.
- W2055872389 cites W2091185305 @default.
- W2055872389 cites W2093660458 @default.
- W2055872389 cites W2100252608 @default.
- W2055872389 cites W2102516165 @default.
- W2055872389 cites W2103274508 @default.
- W2055872389 cites W2108911521 @default.
- W2055872389 cites W2109077896 @default.
- W2055872389 cites W2118065792 @default.
- W2055872389 cites W2120397870 @default.
- W2055872389 cites W2133254854 @default.
- W2055872389 cites W2141527542 @default.
- W2055872389 cites W2143997675 @default.
- W2055872389 cites W2147085801 @default.
- W2055872389 cites W2153162624 @default.
- W2055872389 cites W2153247932 @default.
- W2055872389 cites W2169428322 @default.
- W2055872389 cites W2170006871 @default.
- W2055872389 cites W2221521568 @default.
- W2055872389 doi "https://doi.org/10.1021/jp808424g" @default.
- W2055872389 hasPublicationYear "2009" @default.
- W2055872389 type Work @default.
- W2055872389 sameAs 2055872389 @default.