Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055973980> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2055973980 abstract "Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DCA mechanistic understanding of a drug's biological effect can have significant implications for selection of clinical dosing schedule, combination partners, as well as biomarker selection. In this context, a question often faced from target validation to the end of Phase I is how much of a drug's antitumor effect is through altering cell-cycle progression or through the induction of cell death. Here we demonstrate the utility of a mathematical model of the cell-cycle for determining the effect of a drug on cell-cycle kinetics, as an objective and quantiative interpretation of DNA flow cytometry and cellular growth rate data. The model uses periodic measurement of DNA content as analyzed by flow cytometry to determine the percentage of cells in G0/G1, S, and G2/M phases of the cell cycle, as well as continuous readouts of cell confluence over the course of treatment to assess growth rates. The model is then fitted to the data to extract effective cell cycle transition rates demonstrating the effect of the drug on cell cycle progression.To demonstrate of the approach, we applied the model to data acquired during treatment of A375 melanoma cells with the investigational drug TAK-733, an allosteric MEK 1/2 inhibitor hypothesized to cause a G1 arrest. Rather than an arrest at G1, the model predicted that the G1-to-S transition rate was reduced, and that much of the change in cell cycle data was due to an increase in the S-to-G2/M and G2/M-to-G0/G1 transition rates. These model predictions were then tested with video microscopy and both predictions (increased time spent in G0/G1 as well as reduced time spent in mitosis) were supported by experimental data.The model was then used to test whether the cell cycle activity of the compound has any implications for optimization of dosing schedule. By varying the schedule of drug treatment in the simulation, we find that for the biologically relevant concentration range the compound is schedule independent (i.e. effect is proportional to AUC). This finding suggests that there is no need to maintain constant pathway inhibition to see efficacy in tumor volume reduction. To test this prediction, we compare the results with the outcome of experiments in an A375 xenograft model with different dosing schedules and verify directly that AUC was indeed a better predictor of efficacy than Cmin.With this example, we demonstrate that mathematical modeling can be used to aid in interpretation of cell cycle data, often generated to describe the cell killing activity of oncology compounds. In addition, the model provides a method of interpreting the mechanism of action for early development decision making around schedule selection. This work demonstrates an approach that can be extended to other compounds to provide an integrated measure of the total contribution of cell death and/or cell cycle arrest, to help provide a mechanistic rationale for schedule selection with single agent and combination therapies.Citation Format: Jerome Mettetal, Derek Blair, Esha Gangoli, Patrick Vincent, Jeff Ecsedy, Wen Chyi Shyu, Arijit Chakravarty. Mathematical model of the cell cycle to determine mechanism of action and optimize dosing schedule. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 3411. doi:10.1158/1538-7445.AM2013-3411" @default.
- W2055973980 created "2016-06-24" @default.
- W2055973980 creator A5003610011 @default.
- W2055973980 creator A5007302063 @default.
- W2055973980 creator A5008571021 @default.
- W2055973980 creator A5040025213 @default.
- W2055973980 creator A5063100336 @default.
- W2055973980 creator A5065494091 @default.
- W2055973980 creator A5082876568 @default.
- W2055973980 date "2013-04-15" @default.
- W2055973980 modified "2023-09-25" @default.
- W2055973980 title "Abstract 3411: Mathematical model of the cell cycle to determine mechanism of action and optimize dosing schedule." @default.
- W2055973980 doi "https://doi.org/10.1158/1538-7445.am2013-3411" @default.
- W2055973980 hasPublicationYear "2013" @default.
- W2055973980 type Work @default.
- W2055973980 sameAs 2055973980 @default.
- W2055973980 citedByCount "0" @default.
- W2055973980 crossrefType "proceedings-article" @default.
- W2055973980 hasAuthorship W2055973980A5003610011 @default.
- W2055973980 hasAuthorship W2055973980A5007302063 @default.
- W2055973980 hasAuthorship W2055973980A5008571021 @default.
- W2055973980 hasAuthorship W2055973980A5040025213 @default.
- W2055973980 hasAuthorship W2055973980A5063100336 @default.
- W2055973980 hasAuthorship W2055973980A5065494091 @default.
- W2055973980 hasAuthorship W2055973980A5082876568 @default.
- W2055973980 hasConcept C105696609 @default.
- W2055973980 hasConcept C121608353 @default.
- W2055973980 hasConcept C1491633281 @default.
- W2055973980 hasConcept C151730666 @default.
- W2055973980 hasConcept C185592680 @default.
- W2055973980 hasConcept C203014093 @default.
- W2055973980 hasConcept C2779343474 @default.
- W2055973980 hasConcept C29537977 @default.
- W2055973980 hasConcept C2994037739 @default.
- W2055973980 hasConcept C502942594 @default.
- W2055973980 hasConcept C54355233 @default.
- W2055973980 hasConcept C553184892 @default.
- W2055973980 hasConcept C55493867 @default.
- W2055973980 hasConcept C62112901 @default.
- W2055973980 hasConcept C86803240 @default.
- W2055973980 hasConcept C88254577 @default.
- W2055973980 hasConcept C98274493 @default.
- W2055973980 hasConceptScore W2055973980C105696609 @default.
- W2055973980 hasConceptScore W2055973980C121608353 @default.
- W2055973980 hasConceptScore W2055973980C1491633281 @default.
- W2055973980 hasConceptScore W2055973980C151730666 @default.
- W2055973980 hasConceptScore W2055973980C185592680 @default.
- W2055973980 hasConceptScore W2055973980C203014093 @default.
- W2055973980 hasConceptScore W2055973980C2779343474 @default.
- W2055973980 hasConceptScore W2055973980C29537977 @default.
- W2055973980 hasConceptScore W2055973980C2994037739 @default.
- W2055973980 hasConceptScore W2055973980C502942594 @default.
- W2055973980 hasConceptScore W2055973980C54355233 @default.
- W2055973980 hasConceptScore W2055973980C553184892 @default.
- W2055973980 hasConceptScore W2055973980C55493867 @default.
- W2055973980 hasConceptScore W2055973980C62112901 @default.
- W2055973980 hasConceptScore W2055973980C86803240 @default.
- W2055973980 hasConceptScore W2055973980C88254577 @default.
- W2055973980 hasConceptScore W2055973980C98274493 @default.
- W2055973980 hasLocation W20559739801 @default.
- W2055973980 hasOpenAccess W2055973980 @default.
- W2055973980 hasPrimaryLocation W20559739801 @default.
- W2055973980 hasRelatedWork W1552238359 @default.
- W2055973980 hasRelatedWork W1965297054 @default.
- W2055973980 hasRelatedWork W1967044220 @default.
- W2055973980 hasRelatedWork W1976080761 @default.
- W2055973980 hasRelatedWork W1987302990 @default.
- W2055973980 hasRelatedWork W2030352632 @default.
- W2055973980 hasRelatedWork W2058667303 @default.
- W2055973980 hasRelatedWork W2077567587 @default.
- W2055973980 hasRelatedWork W2143429228 @default.
- W2055973980 hasRelatedWork W2324814978 @default.
- W2055973980 hasRelatedWork W2396363467 @default.
- W2055973980 hasRelatedWork W2561928655 @default.
- W2055973980 hasRelatedWork W2738326254 @default.
- W2055973980 hasRelatedWork W2972753504 @default.
- W2055973980 hasRelatedWork W3007886309 @default.
- W2055973980 hasRelatedWork W3128312615 @default.
- W2055973980 hasRelatedWork W3165298259 @default.
- W2055973980 hasRelatedWork W3206129518 @default.
- W2055973980 hasRelatedWork W410824917 @default.
- W2055973980 hasRelatedWork W2166591569 @default.
- W2055973980 isParatext "false" @default.
- W2055973980 isRetracted "false" @default.
- W2055973980 magId "2055973980" @default.
- W2055973980 workType "article" @default.