Matches in SemOpenAlex for { <https://semopenalex.org/work/W2055980116> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2055980116 endingPage "246" @default.
- W2055980116 startingPage "237" @default.
- W2055980116 abstract "This paper describes analyses of case studies on failure of structural components in power plants using hierarchical (multilayer) neural networks. Using selected test data about case studies stored in the structural failure database of a knowledge-based system, the network is trained: either to predict possible failure mechanisms like creep, overheating (OH), or overstressing (OS)-induced failure (network of Type A), or to classify a root failure cause of each case study into either a primary or secondary cause (network of Type B). In the present study, the primary root cause is defined as “manufacturing, material or design-induced causes,” while the secondary one as “not manufacturing, material or design-induced causes, e.g., failures due to operation or mal-operation.” An ordinary three-layer neural network employing the back propagation algorithm with the momentum method is utilized in this study. The results clearly show that the neural network is a powerful tool for analyzing case studies of failure in structural components. For example, the trained network of Type A predicts creep-induced failure in unknown case studies with an accuracy of 86 percent, while the network of Type B classifies root failure causes of unknown case studies with an accuracy of 88 percent. It should be noted that, due to a shortage of available case studies, an appropriate selection of case studies and input parameters to be used for network training was necessary in order to attain high accuracy. A collection of more case studies should, however, resolve this problem, and improve the accuracy of the analyses. An analysis module for case studies using the neural network has also been developed and successfully implemented in a knowledge-based system." @default.
- W2055980116 created "2016-06-24" @default.
- W2055980116 creator A5017831043 @default.
- W2055980116 creator A5031052753 @default.
- W2055980116 date "1996-05-01" @default.
- W2055980116 modified "2023-10-03" @default.
- W2055980116 title "Analyses of Possible Failure Mechanisms and Root Failure Causes in Power Plant Components Using Neural Networks and Structural Failure Database" @default.
- W2055980116 cites W1622831358 @default.
- W2055980116 cites W1971735090 @default.
- W2055980116 cites W2002847526 @default.
- W2055980116 cites W2041526499 @default.
- W2055980116 cites W2095727900 @default.
- W2055980116 cites W2142256019 @default.
- W2055980116 cites W2327309161 @default.
- W2055980116 cites W4253334660 @default.
- W2055980116 cites W4300402905 @default.
- W2055980116 doi "https://doi.org/10.1115/1.2842186" @default.
- W2055980116 hasPublicationYear "1996" @default.
- W2055980116 type Work @default.
- W2055980116 sameAs 2055980116 @default.
- W2055980116 citedByCount "3" @default.
- W2055980116 countsByYear W20559801162021 @default.
- W2055980116 crossrefType "journal-article" @default.
- W2055980116 hasAuthorship W2055980116A5017831043 @default.
- W2055980116 hasAuthorship W2055980116A5031052753 @default.
- W2055980116 hasConcept C119599485 @default.
- W2055980116 hasConcept C119857082 @default.
- W2055980116 hasConcept C124101348 @default.
- W2055980116 hasConcept C127413603 @default.
- W2055980116 hasConcept C130963320 @default.
- W2055980116 hasConcept C138885662 @default.
- W2055980116 hasConcept C154945302 @default.
- W2055980116 hasConcept C194051981 @default.
- W2055980116 hasConcept C200601418 @default.
- W2055980116 hasConcept C2778137410 @default.
- W2055980116 hasConcept C2778284599 @default.
- W2055980116 hasConcept C41008148 @default.
- W2055980116 hasConcept C41895202 @default.
- W2055980116 hasConcept C50644808 @default.
- W2055980116 hasConcept C84945661 @default.
- W2055980116 hasConceptScore W2055980116C119599485 @default.
- W2055980116 hasConceptScore W2055980116C119857082 @default.
- W2055980116 hasConceptScore W2055980116C124101348 @default.
- W2055980116 hasConceptScore W2055980116C127413603 @default.
- W2055980116 hasConceptScore W2055980116C130963320 @default.
- W2055980116 hasConceptScore W2055980116C138885662 @default.
- W2055980116 hasConceptScore W2055980116C154945302 @default.
- W2055980116 hasConceptScore W2055980116C194051981 @default.
- W2055980116 hasConceptScore W2055980116C200601418 @default.
- W2055980116 hasConceptScore W2055980116C2778137410 @default.
- W2055980116 hasConceptScore W2055980116C2778284599 @default.
- W2055980116 hasConceptScore W2055980116C41008148 @default.
- W2055980116 hasConceptScore W2055980116C41895202 @default.
- W2055980116 hasConceptScore W2055980116C50644808 @default.
- W2055980116 hasConceptScore W2055980116C84945661 @default.
- W2055980116 hasIssue "2" @default.
- W2055980116 hasLocation W20559801161 @default.
- W2055980116 hasOpenAccess W2055980116 @default.
- W2055980116 hasPrimaryLocation W20559801161 @default.
- W2055980116 hasRelatedWork W141106878 @default.
- W2055980116 hasRelatedWork W1984885591 @default.
- W2055980116 hasRelatedWork W1988621644 @default.
- W2055980116 hasRelatedWork W2079545701 @default.
- W2055980116 hasRelatedWork W2141950192 @default.
- W2055980116 hasRelatedWork W3005087358 @default.
- W2055980116 hasRelatedWork W3171441562 @default.
- W2055980116 hasRelatedWork W4321505428 @default.
- W2055980116 hasRelatedWork W82729759 @default.
- W2055980116 hasRelatedWork W1629725936 @default.
- W2055980116 hasVolume "118" @default.
- W2055980116 isParatext "false" @default.
- W2055980116 isRetracted "false" @default.
- W2055980116 magId "2055980116" @default.
- W2055980116 workType "article" @default.