Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056056656> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2056056656 endingPage "873" @default.
- W2056056656 startingPage "855" @default.
- W2056056656 abstract "Linear mixed effects models are frequently used to analyse longitudinal data, due to their flexibility in modelling the covariance structure between and within observations. Further, it is easy to deal with unbalanced data, either with respect to the number of observations per subject or per time period, and with varying time intervals between observations. In most applications of mixed models to biological sciences, a normal distribution is assumed both for the random effects and for the residuals. This, however, makes inferences vulnerable to the presence of outliers. Here, linear mixed models employing thick-tailed distributions for robust inferences in longitudinal data analysis are described. Specific distributions discussed include the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted, and the Gibbs sampler and the Metropolis-Hastings algorithms are used to carry out the posterior analyses. An example with data on orthodontic distance growth in children is discussed to illustrate the methodology. Analyses based on either the Student-t distribution or on the usual Gaussian assumption are contrasted. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process for modelling distributions of the random effects and of residuals in linear mixed models, and the MCMC implementation allows the computations to be performed in a flexible manner." @default.
- W2056056656 created "2016-06-24" @default.
- W2056056656 creator A5000412711 @default.
- W2056056656 creator A5009058174 @default.
- W2056056656 creator A5086458556 @default.
- W2056056656 date "2004-08-01" @default.
- W2056056656 modified "2023-10-03" @default.
- W2056056656 title "Bayesian Longitudinal Data Analysis with Mixed Models and Thick-tailed Distributions using MCMC" @default.
- W2056056656 doi "https://doi.org/10.1080/0266476042000214538" @default.
- W2056056656 hasPublicationYear "2004" @default.
- W2056056656 type Work @default.
- W2056056656 sameAs 2056056656 @default.
- W2056056656 citedByCount "37" @default.
- W2056056656 countsByYear W20560566562012 @default.
- W2056056656 countsByYear W20560566562013 @default.
- W2056056656 countsByYear W20560566562014 @default.
- W2056056656 countsByYear W20560566562015 @default.
- W2056056656 countsByYear W20560566562016 @default.
- W2056056656 countsByYear W20560566562017 @default.
- W2056056656 countsByYear W20560566562018 @default.
- W2056056656 countsByYear W20560566562019 @default.
- W2056056656 countsByYear W20560566562020 @default.
- W2056056656 countsByYear W20560566562021 @default.
- W2056056656 crossrefType "journal-article" @default.
- W2056056656 hasAuthorship W2056056656A5000412711 @default.
- W2056056656 hasAuthorship W2056056656A5009058174 @default.
- W2056056656 hasAuthorship W2056056656A5086458556 @default.
- W2056056656 hasConcept C105795698 @default.
- W2056056656 hasConcept C107673813 @default.
- W2056056656 hasConcept C111350023 @default.
- W2056056656 hasConcept C126322002 @default.
- W2056056656 hasConcept C153720581 @default.
- W2056056656 hasConcept C158424031 @default.
- W2056056656 hasConcept C16012445 @default.
- W2056056656 hasConcept C168743327 @default.
- W2056056656 hasConcept C178650346 @default.
- W2056056656 hasConcept C33923547 @default.
- W2056056656 hasConcept C41008148 @default.
- W2056056656 hasConcept C71924100 @default.
- W2056056656 hasConcept C79337645 @default.
- W2056056656 hasConcept C95190672 @default.
- W2056056656 hasConceptScore W2056056656C105795698 @default.
- W2056056656 hasConceptScore W2056056656C107673813 @default.
- W2056056656 hasConceptScore W2056056656C111350023 @default.
- W2056056656 hasConceptScore W2056056656C126322002 @default.
- W2056056656 hasConceptScore W2056056656C153720581 @default.
- W2056056656 hasConceptScore W2056056656C158424031 @default.
- W2056056656 hasConceptScore W2056056656C16012445 @default.
- W2056056656 hasConceptScore W2056056656C168743327 @default.
- W2056056656 hasConceptScore W2056056656C178650346 @default.
- W2056056656 hasConceptScore W2056056656C33923547 @default.
- W2056056656 hasConceptScore W2056056656C41008148 @default.
- W2056056656 hasConceptScore W2056056656C71924100 @default.
- W2056056656 hasConceptScore W2056056656C79337645 @default.
- W2056056656 hasConceptScore W2056056656C95190672 @default.
- W2056056656 hasIssue "7" @default.
- W2056056656 hasLocation W20560566561 @default.
- W2056056656 hasOpenAccess W2056056656 @default.
- W2056056656 hasPrimaryLocation W20560566561 @default.
- W2056056656 hasRelatedWork W144895551 @default.
- W2056056656 hasRelatedWork W2018369098 @default.
- W2056056656 hasRelatedWork W2040713875 @default.
- W2056056656 hasRelatedWork W2074586297 @default.
- W2056056656 hasRelatedWork W2123407693 @default.
- W2056056656 hasRelatedWork W2129695604 @default.
- W2056056656 hasRelatedWork W2799323880 @default.
- W2056056656 hasRelatedWork W3204689413 @default.
- W2056056656 hasRelatedWork W85196187 @default.
- W2056056656 hasRelatedWork W2740454639 @default.
- W2056056656 hasVolume "31" @default.
- W2056056656 isParatext "false" @default.
- W2056056656 isRetracted "false" @default.
- W2056056656 magId "2056056656" @default.
- W2056056656 workType "article" @default.