Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056336673> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2056336673 endingPage "6772" @default.
- W2056336673 startingPage "6755" @default.
- W2056336673 abstract "We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PC's ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available." @default.
- W2056336673 created "2016-06-24" @default.
- W2056336673 creator A5011602062 @default.
- W2056336673 creator A5015616065 @default.
- W2056336673 creator A5082247354 @default.
- W2056336673 date "2014-11-01" @default.
- W2056336673 modified "2023-10-16" @default.
- W2056336673 title "A hybrid algorithm for Bayesian network structure learning with application to multi-label learning" @default.
- W2056336673 cites W1517993545 @default.
- W2056336673 cites W1591178754 @default.
- W2056336673 cites W1829443747 @default.
- W2056336673 cites W1953606363 @default.
- W2056336673 cites W1980545402 @default.
- W2056336673 cites W1982254517 @default.
- W2056336673 cites W1983690667 @default.
- W2056336673 cites W1991020953 @default.
- W2056336673 cites W2013290977 @default.
- W2056336673 cites W2013374740 @default.
- W2056336673 cites W2024809750 @default.
- W2056336673 cites W2039680135 @default.
- W2056336673 cites W2053775054 @default.
- W2056336673 cites W2060282265 @default.
- W2056336673 cites W2093238926 @default.
- W2056336673 cites W2095573931 @default.
- W2056336673 cites W2100603120 @default.
- W2056336673 cites W2119466907 @default.
- W2056336673 cites W2128088446 @default.
- W2056336673 cites W2145827727 @default.
- W2056336673 cites W2161824996 @default.
- W2056336673 cites W2162152738 @default.
- W2056336673 cites W2165190832 @default.
- W2056336673 cites W2168192898 @default.
- W2056336673 cites W2169030506 @default.
- W2056336673 cites W23724364 @default.
- W2056336673 cites W2911964244 @default.
- W2056336673 doi "https://doi.org/10.1016/j.eswa.2014.04.032" @default.
- W2056336673 hasPublicationYear "2014" @default.
- W2056336673 type Work @default.
- W2056336673 sameAs 2056336673 @default.
- W2056336673 citedByCount "53" @default.
- W2056336673 countsByYear W20563366732015 @default.
- W2056336673 countsByYear W20563366732016 @default.
- W2056336673 countsByYear W20563366732017 @default.
- W2056336673 countsByYear W20563366732018 @default.
- W2056336673 countsByYear W20563366732019 @default.
- W2056336673 countsByYear W20563366732020 @default.
- W2056336673 countsByYear W20563366732021 @default.
- W2056336673 countsByYear W20563366732022 @default.
- W2056336673 countsByYear W20563366732023 @default.
- W2056336673 crossrefType "journal-article" @default.
- W2056336673 hasAuthorship W2056336673A5011602062 @default.
- W2056336673 hasAuthorship W2056336673A5015616065 @default.
- W2056336673 hasAuthorship W2056336673A5082247354 @default.
- W2056336673 hasBestOaLocation W20563366732 @default.
- W2056336673 hasConcept C107673813 @default.
- W2056336673 hasConcept C11413529 @default.
- W2056336673 hasConcept C119857082 @default.
- W2056336673 hasConcept C135450995 @default.
- W2056336673 hasConcept C154945302 @default.
- W2056336673 hasConcept C160234255 @default.
- W2056336673 hasConcept C2776482837 @default.
- W2056336673 hasConcept C33724603 @default.
- W2056336673 hasConcept C41008148 @default.
- W2056336673 hasConcept C71983512 @default.
- W2056336673 hasConceptScore W2056336673C107673813 @default.
- W2056336673 hasConceptScore W2056336673C11413529 @default.
- W2056336673 hasConceptScore W2056336673C119857082 @default.
- W2056336673 hasConceptScore W2056336673C135450995 @default.
- W2056336673 hasConceptScore W2056336673C154945302 @default.
- W2056336673 hasConceptScore W2056336673C160234255 @default.
- W2056336673 hasConceptScore W2056336673C2776482837 @default.
- W2056336673 hasConceptScore W2056336673C33724603 @default.
- W2056336673 hasConceptScore W2056336673C41008148 @default.
- W2056336673 hasConceptScore W2056336673C71983512 @default.
- W2056336673 hasIssue "15" @default.
- W2056336673 hasLocation W20563366731 @default.
- W2056336673 hasLocation W20563366732 @default.
- W2056336673 hasLocation W20563366733 @default.
- W2056336673 hasLocation W20563366734 @default.
- W2056336673 hasLocation W20563366735 @default.
- W2056336673 hasLocation W20563366736 @default.
- W2056336673 hasOpenAccess W2056336673 @default.
- W2056336673 hasPrimaryLocation W20563366731 @default.
- W2056336673 hasRelatedWork W1700460858 @default.
- W2056336673 hasRelatedWork W201565394 @default.
- W2056336673 hasRelatedWork W2120658990 @default.
- W2056336673 hasRelatedWork W2353852789 @default.
- W2056336673 hasRelatedWork W2383034311 @default.
- W2056336673 hasRelatedWork W2391701421 @default.
- W2056336673 hasRelatedWork W2592745513 @default.
- W2056336673 hasRelatedWork W2985695769 @default.
- W2056336673 hasRelatedWork W4309448762 @default.
- W2056336673 hasRelatedWork W643788828 @default.
- W2056336673 hasVolume "41" @default.
- W2056336673 isParatext "false" @default.
- W2056336673 isRetracted "false" @default.
- W2056336673 magId "2056336673" @default.
- W2056336673 workType "article" @default.