Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056511439> ?p ?o ?g. }
- W2056511439 endingPage "98" @default.
- W2056511439 startingPage "87" @default.
- W2056511439 abstract "The use of molybdenum isotope data (δ98Mo) from organic-rich shales to draw inferences concerning marine paleoredox conditions at a global scale is predicated upon the assumptions of (1) a residence time of Mo in seawater much greater than the ocean mixing time, and (2) quantitative removal of Mo from a strongly euxinic ([H2S]aq > 11 μM) water column to the sediment, thus preserving the seawater δ98Mo signature. In this study we analyze Mo isotopic variation in the Hushpuckney Shale, a 73-cm-thick unit representing the late transgressive to early regressive stages of a glacio-eustatic cyclothem (Swope Formation) deposited in the Late Pennsylvanian Midcontinent Sea (LPMS) of North America. The Hushpuckney can be subdivided into four stratigraphic zones of distinctive geochemical character. Zones I and III, which accumulated under weakly euxinic conditions, acquired relatively high δ98Mo values (+0.9 to +1.1‰), whereas Zone II, which accumulated under intensely euxinic conditions, acquired lower δ98Mo values (~+0.6‰). Zone IV, which accumulated under suboxic conditions in the water column, acquired the heaviest δ98Mo values (+1.1 to +1.8‰). These results contrast with the pattern of redox — δ98Mo covariation in modern marine environments, in which the heaviest δ98Mo values are found in the most intensely euxinic facies. We evaluate three different hypotheses to account for the Mo isotopic patterns of the Hushpuckney Shale. One hypothesis, seawater–freshwater mixing, is rejected owing to isotopic mass balance considerations. A second hypothesis is a local control on δ98Mo by water-column redox cycling of Mn, with particulate Mn-oxyhydroxides adsorbing isotopically light Mo and transferring it to the sediment, a process that was most active during deposition of Zone II. The significance of this scenario is that euxinic black shales may not reliably record global seawater δ98Mo in areas where a Mn-particulate shuttle is operative. A third hypothesis is based on rapid secular variation of the Mo isotope composition of Late Pennsylvanian global seawater. In order to account for δ98Mo trends within the Hushpuckney Shale, seawater δ98Mo must have varied by ~ 1.2‰ at a ~ 100-kyr timescale, which would have been possible only if the residence time of Mo in Late Pennsylvanian seawater was < 100 kyr. Although both the second and third hypotheses are viable based on the present limited δ98Mo dataset, we discuss how each model might be tested through additional Mo isotope data." @default.
- W2056511439 created "2016-06-24" @default.
- W2056511439 creator A5012184952 @default.
- W2056511439 creator A5040002071 @default.
- W2056511439 creator A5051003403 @default.
- W2056511439 creator A5060024339 @default.
- W2056511439 creator A5070746201 @default.
- W2056511439 creator A5091885805 @default.
- W2056511439 date "2012-09-01" @default.
- W2056511439 modified "2023-10-06" @default.
- W2056511439 title "Anomalous molybdenum isotope trends in Upper Pennsylvanian euxinic facies: Significance for use of δ98Mo as a global marine redox proxy" @default.
- W2056511439 cites W1505794346 @default.
- W2056511439 cites W1642387437 @default.
- W2056511439 cites W1648236804 @default.
- W2056511439 cites W1932213836 @default.
- W2056511439 cites W1965665593 @default.
- W2056511439 cites W1975543779 @default.
- W2056511439 cites W1978255350 @default.
- W2056511439 cites W1980736001 @default.
- W2056511439 cites W1981604399 @default.
- W2056511439 cites W1987099641 @default.
- W2056511439 cites W1988000897 @default.
- W2056511439 cites W1988521845 @default.
- W2056511439 cites W1990551657 @default.
- W2056511439 cites W1991613446 @default.
- W2056511439 cites W1992316766 @default.
- W2056511439 cites W1992363956 @default.
- W2056511439 cites W1998115262 @default.
- W2056511439 cites W2001371481 @default.
- W2056511439 cites W2007797388 @default.
- W2056511439 cites W2012212240 @default.
- W2056511439 cites W2013564328 @default.
- W2056511439 cites W2017401510 @default.
- W2056511439 cites W2019003007 @default.
- W2056511439 cites W2020631331 @default.
- W2056511439 cites W2020700198 @default.
- W2056511439 cites W2022741740 @default.
- W2056511439 cites W2028326186 @default.
- W2056511439 cites W2034709836 @default.
- W2056511439 cites W2041762395 @default.
- W2056511439 cites W2042505381 @default.
- W2056511439 cites W2044042101 @default.
- W2056511439 cites W2045312715 @default.
- W2056511439 cites W2047870078 @default.
- W2056511439 cites W2047975084 @default.
- W2056511439 cites W2055862951 @default.
- W2056511439 cites W2057025829 @default.
- W2056511439 cites W2058567429 @default.
- W2056511439 cites W2059146037 @default.
- W2056511439 cites W2063141674 @default.
- W2056511439 cites W2065526973 @default.
- W2056511439 cites W2068263661 @default.
- W2056511439 cites W2074831421 @default.
- W2056511439 cites W2075175782 @default.
- W2056511439 cites W2078413024 @default.
- W2056511439 cites W2078540824 @default.
- W2056511439 cites W2079852365 @default.
- W2056511439 cites W2080159193 @default.
- W2056511439 cites W2083645617 @default.
- W2056511439 cites W2086021893 @default.
- W2056511439 cites W2087272845 @default.
- W2056511439 cites W2087547487 @default.
- W2056511439 cites W2099941855 @default.
- W2056511439 cites W2099961502 @default.
- W2056511439 cites W2102947943 @default.
- W2056511439 cites W2104764232 @default.
- W2056511439 cites W2128033881 @default.
- W2056511439 cites W2131731927 @default.
- W2056511439 cites W2133553657 @default.
- W2056511439 cites W2140598164 @default.
- W2056511439 cites W2148077486 @default.
- W2056511439 cites W2151687448 @default.
- W2056511439 cites W2156107051 @default.
- W2056511439 cites W2166679308 @default.
- W2056511439 cites W3021130249 @default.
- W2056511439 doi "https://doi.org/10.1016/j.chemgeo.2012.05.013" @default.
- W2056511439 hasPublicationYear "2012" @default.
- W2056511439 type Work @default.
- W2056511439 sameAs 2056511439 @default.
- W2056511439 citedByCount "49" @default.
- W2056511439 countsByYear W20565114392013 @default.
- W2056511439 countsByYear W20565114392014 @default.
- W2056511439 countsByYear W20565114392015 @default.
- W2056511439 countsByYear W20565114392016 @default.
- W2056511439 countsByYear W20565114392017 @default.
- W2056511439 countsByYear W20565114392018 @default.
- W2056511439 countsByYear W20565114392019 @default.
- W2056511439 countsByYear W20565114392020 @default.
- W2056511439 countsByYear W20565114392021 @default.
- W2056511439 countsByYear W20565114392022 @default.
- W2056511439 countsByYear W20565114392023 @default.
- W2056511439 crossrefType "journal-article" @default.
- W2056511439 hasAuthorship W2056511439A5012184952 @default.
- W2056511439 hasAuthorship W2056511439A5040002071 @default.
- W2056511439 hasAuthorship W2056511439A5051003403 @default.
- W2056511439 hasAuthorship W2056511439A5060024339 @default.
- W2056511439 hasAuthorship W2056511439A5070746201 @default.
- W2056511439 hasAuthorship W2056511439A5091885805 @default.