Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056520176> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2056520176 endingPage "012020" @default.
- W2056520176 startingPage "012020" @default.
- W2056520176 abstract "Even though a lot of research has gone into diagnosing misfire in IC engines, most approaches use torsional vibration of the crankshaft, and only a few use the rocking motion (roll) of the engine block. Additionally, misfire diagnosis normally requires an expert to interpret the analysis results from measured vibration signals. Artificial Neural Networks (ANNs) are potential tools for the automated misfire diagnosis of IC engines, as they can learn the patterns corresponding to various faults. This paper proposes an ANN-based automated diagnostic system which combines torsional vibration and rotation of the block for more robust misfire diagnosis. A critical issue with ANN applications is the network training, and it is improbable and/or uneconomical to expect to experience a sufficient number of different faults, or generate them in seeded tests, to obtain sufficient experimental results for the network training. Therefore, new simulation models, which can simulate combustion faults in engines, were developed. The simulation models are based on the thermodynamic and mechanical principles of IC engines and therefore the proposed misfire diagnostic system can in principle be adapted for any engine. During the building process of the models, based on a particular engine, some mechanical and physical parameters, for example the inertial properties of the engine parts and parameters of engine mounts, were first measured and calculated. A series of experiments were then carried out to capture the vibration signals for both normal condition and with a range of faults. The simulation models were updated and evaluated by the experimental results. Following the signal processing of the experimental and simulation signals, the best features were selected as the inputs to ANN networks. The automated diagnostic system comprises three stages: misfire detection, misfire localization and severity identification. Multi-layer Perceptron (MLP) and Probabilistic Neural Networks were applied in the different stages. The final results have shown that the diagnostic system can efficiently diagnose different misfire conditions, including location and severity." @default.
- W2056520176 created "2016-06-24" @default.
- W2056520176 creator A5020571191 @default.
- W2056520176 creator A5024162511 @default.
- W2056520176 creator A5027182675 @default.
- W2056520176 creator A5034947641 @default.
- W2056520176 creator A5065455337 @default.
- W2056520176 date "2012-05-28" @default.
- W2056520176 modified "2023-09-23" @default.
- W2056520176 title "Automated misfire diagnosis in engines using torsional vibration and block rotation" @default.
- W2056520176 cites W156689764 @default.
- W2056520176 cites W1825077972 @default.
- W2056520176 cites W1978967303 @default.
- W2056520176 cites W1993460282 @default.
- W2056520176 cites W2023098249 @default.
- W2056520176 cites W2149854044 @default.
- W2056520176 cites W2076104262 @default.
- W2056520176 doi "https://doi.org/10.1088/1742-6596/364/1/012020" @default.
- W2056520176 hasPublicationYear "2012" @default.
- W2056520176 type Work @default.
- W2056520176 sameAs 2056520176 @default.
- W2056520176 citedByCount "7" @default.
- W2056520176 countsByYear W20565201762012 @default.
- W2056520176 countsByYear W20565201762014 @default.
- W2056520176 countsByYear W20565201762015 @default.
- W2056520176 countsByYear W20565201762016 @default.
- W2056520176 countsByYear W20565201762018 @default.
- W2056520176 countsByYear W20565201762021 @default.
- W2056520176 crossrefType "journal-article" @default.
- W2056520176 hasAuthorship W2056520176A5020571191 @default.
- W2056520176 hasAuthorship W2056520176A5024162511 @default.
- W2056520176 hasAuthorship W2056520176A5027182675 @default.
- W2056520176 hasAuthorship W2056520176A5034947641 @default.
- W2056520176 hasAuthorship W2056520176A5065455337 @default.
- W2056520176 hasBestOaLocation W20565201761 @default.
- W2056520176 hasConcept C121332964 @default.
- W2056520176 hasConcept C127413603 @default.
- W2056520176 hasConcept C154945302 @default.
- W2056520176 hasConcept C171146098 @default.
- W2056520176 hasConcept C198394728 @default.
- W2056520176 hasConcept C24890656 @default.
- W2056520176 hasConcept C2524010 @default.
- W2056520176 hasConcept C2777210771 @default.
- W2056520176 hasConcept C33923547 @default.
- W2056520176 hasConcept C41008148 @default.
- W2056520176 hasConcept C66938386 @default.
- W2056520176 hasConcept C74050887 @default.
- W2056520176 hasConcept C87744240 @default.
- W2056520176 hasConceptScore W2056520176C121332964 @default.
- W2056520176 hasConceptScore W2056520176C127413603 @default.
- W2056520176 hasConceptScore W2056520176C154945302 @default.
- W2056520176 hasConceptScore W2056520176C171146098 @default.
- W2056520176 hasConceptScore W2056520176C198394728 @default.
- W2056520176 hasConceptScore W2056520176C24890656 @default.
- W2056520176 hasConceptScore W2056520176C2524010 @default.
- W2056520176 hasConceptScore W2056520176C2777210771 @default.
- W2056520176 hasConceptScore W2056520176C33923547 @default.
- W2056520176 hasConceptScore W2056520176C41008148 @default.
- W2056520176 hasConceptScore W2056520176C66938386 @default.
- W2056520176 hasConceptScore W2056520176C74050887 @default.
- W2056520176 hasConceptScore W2056520176C87744240 @default.
- W2056520176 hasLocation W20565201761 @default.
- W2056520176 hasLocation W20565201762 @default.
- W2056520176 hasOpenAccess W2056520176 @default.
- W2056520176 hasPrimaryLocation W20565201761 @default.
- W2056520176 hasRelatedWork W2093336584 @default.
- W2056520176 hasRelatedWork W2122387492 @default.
- W2056520176 hasRelatedWork W2153627932 @default.
- W2056520176 hasRelatedWork W2350174913 @default.
- W2056520176 hasRelatedWork W2363822746 @default.
- W2056520176 hasRelatedWork W2373882526 @default.
- W2056520176 hasRelatedWork W2409689863 @default.
- W2056520176 hasRelatedWork W2741539024 @default.
- W2056520176 hasRelatedWork W2914944192 @default.
- W2056520176 hasRelatedWork W757413692 @default.
- W2056520176 hasVolume "364" @default.
- W2056520176 isParatext "false" @default.
- W2056520176 isRetracted "false" @default.
- W2056520176 magId "2056520176" @default.
- W2056520176 workType "article" @default.