Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056531111> ?p ?o ?g. }
- W2056531111 endingPage "13965" @default.
- W2056531111 startingPage "13958" @default.
- W2056531111 abstract "Proteolysis is regulated by inactive (latent) zymogens, with a prosegment preventing access of substrates to the active-site cleft of the enzyme. How latency is maintained often depends on the catalytic mechanism of the protease. For example, in several families of the metzincin metallopeptidases, a “cysteine switch” mechanism involves a conserved prosegment motif with a cysteine residue that coordinates the catalytic zinc ion. Another family of metzincins, the astacins, do not possess a cysteine switch, so latency is maintained by other means. We have solved the high resolution crystal structure of proastacin from the European crayfish, Astacus astacus. Its prosegment is the shortest structurally reported for a metallopeptidase, and it has a unique structure. It runs through the active-site cleft in reverse orientation to a genuine substrate. Moreover, a conserved aspartate, projected by a wide loop of the prosegment, coordinates the zinc ion instead of the catalytic solvent molecule found in the mature enzyme. Activation occurs through two-step limited proteolysis and entails major rearrangement of a flexible activation domain, which becomes rigid and creates the base of the substrate-binding cleft. Maturation also requires the newly formed N terminus to be precisely trimmed so that it can participate in a buried solvent-mediated hydrogen-bonding network, which includes an invariant active-site residue. We describe a novel mechanism for latency and activation, which shares some common features both with other metallopeptidases and with serine peptidases. Proteolysis is regulated by inactive (latent) zymogens, with a prosegment preventing access of substrates to the active-site cleft of the enzyme. How latency is maintained often depends on the catalytic mechanism of the protease. For example, in several families of the metzincin metallopeptidases, a “cysteine switch” mechanism involves a conserved prosegment motif with a cysteine residue that coordinates the catalytic zinc ion. Another family of metzincins, the astacins, do not possess a cysteine switch, so latency is maintained by other means. We have solved the high resolution crystal structure of proastacin from the European crayfish, Astacus astacus. Its prosegment is the shortest structurally reported for a metallopeptidase, and it has a unique structure. It runs through the active-site cleft in reverse orientation to a genuine substrate. Moreover, a conserved aspartate, projected by a wide loop of the prosegment, coordinates the zinc ion instead of the catalytic solvent molecule found in the mature enzyme. Activation occurs through two-step limited proteolysis and entails major rearrangement of a flexible activation domain, which becomes rigid and creates the base of the substrate-binding cleft. Maturation also requires the newly formed N terminus to be precisely trimmed so that it can participate in a buried solvent-mediated hydrogen-bonding network, which includes an invariant active-site residue. We describe a novel mechanism for latency and activation, which shares some common features both with other metallopeptidases and with serine peptidases." @default.
- W2056531111 created "2016-06-24" @default.
- W2056531111 creator A5020190980 @default.
- W2056531111 creator A5023079125 @default.
- W2056531111 creator A5043803485 @default.
- W2056531111 creator A5070856702 @default.
- W2056531111 creator A5078668459 @default.
- W2056531111 creator A5037956487 @default.
- W2056531111 date "2010-04-01" @default.
- W2056531111 modified "2023-10-09" @default.
- W2056531111 title "Proenzyme Structure and Activation of Astacin Metallopeptidase" @default.
- W2056531111 cites W1493670404 @default.
- W2056531111 cites W1505402212 @default.
- W2056531111 cites W1506994069 @default.
- W2056531111 cites W1607581180 @default.
- W2056531111 cites W1964428785 @default.
- W2056531111 cites W1968539554 @default.
- W2056531111 cites W1976259855 @default.
- W2056531111 cites W1978976864 @default.
- W2056531111 cites W1985469117 @default.
- W2056531111 cites W1991063206 @default.
- W2056531111 cites W1995017064 @default.
- W2056531111 cites W2006946696 @default.
- W2056531111 cites W2019838731 @default.
- W2056531111 cites W2021116136 @default.
- W2056531111 cites W2022274063 @default.
- W2056531111 cites W2028010567 @default.
- W2056531111 cites W2037131689 @default.
- W2056531111 cites W2043983880 @default.
- W2056531111 cites W2049521571 @default.
- W2056531111 cites W2050023553 @default.
- W2056531111 cites W2055580270 @default.
- W2056531111 cites W2057200339 @default.
- W2056531111 cites W2058197352 @default.
- W2056531111 cites W2059919196 @default.
- W2056531111 cites W2061220971 @default.
- W2056531111 cites W2068959407 @default.
- W2056531111 cites W2083699890 @default.
- W2056531111 cites W2089047063 @default.
- W2056531111 cites W2089719502 @default.
- W2056531111 cites W2094102556 @default.
- W2056531111 cites W2097382368 @default.
- W2056531111 cites W2115869732 @default.
- W2056531111 cites W2118455767 @default.
- W2056531111 cites W2121040393 @default.
- W2056531111 cites W2122266747 @default.
- W2056531111 cites W2122339645 @default.
- W2056531111 cites W2129796035 @default.
- W2056531111 cites W2136255360 @default.
- W2056531111 cites W2138075022 @default.
- W2056531111 cites W2139808833 @default.
- W2056531111 cites W2140642290 @default.
- W2056531111 cites W2141249507 @default.
- W2056531111 cites W2145144268 @default.
- W2056531111 cites W2151523705 @default.
- W2056531111 cites W2154382678 @default.
- W2056531111 cites W2156002390 @default.
- W2056531111 cites W2160366016 @default.
- W2056531111 cites W2161366665 @default.
- W2056531111 cites W2163341755 @default.
- W2056531111 cites W2164149983 @default.
- W2056531111 cites W2167709602 @default.
- W2056531111 cites W4210675630 @default.
- W2056531111 cites W4247157855 @default.
- W2056531111 doi "https://doi.org/10.1074/jbc.m109.097436" @default.
- W2056531111 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2859558" @default.
- W2056531111 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20202938" @default.
- W2056531111 hasPublicationYear "2010" @default.
- W2056531111 type Work @default.
- W2056531111 sameAs 2056531111 @default.
- W2056531111 citedByCount "72" @default.
- W2056531111 countsByYear W20565311112012 @default.
- W2056531111 countsByYear W20565311112013 @default.
- W2056531111 countsByYear W20565311112014 @default.
- W2056531111 countsByYear W20565311112015 @default.
- W2056531111 countsByYear W20565311112016 @default.
- W2056531111 countsByYear W20565311112017 @default.
- W2056531111 countsByYear W20565311112018 @default.
- W2056531111 countsByYear W20565311112019 @default.
- W2056531111 countsByYear W20565311112020 @default.
- W2056531111 countsByYear W20565311112021 @default.
- W2056531111 countsByYear W20565311112022 @default.
- W2056531111 countsByYear W20565311112023 @default.
- W2056531111 crossrefType "journal-article" @default.
- W2056531111 hasAuthorship W2056531111A5020190980 @default.
- W2056531111 hasAuthorship W2056531111A5023079125 @default.
- W2056531111 hasAuthorship W2056531111A5037956487 @default.
- W2056531111 hasAuthorship W2056531111A5043803485 @default.
- W2056531111 hasAuthorship W2056531111A5070856702 @default.
- W2056531111 hasAuthorship W2056531111A5078668459 @default.
- W2056531111 hasBestOaLocation W20565311111 @default.
- W2056531111 hasConcept C181199279 @default.
- W2056531111 hasConcept C185592680 @default.
- W2056531111 hasConcept C2776414213 @default.
- W2056531111 hasConcept C2776714187 @default.
- W2056531111 hasConcept C2777807008 @default.
- W2056531111 hasConcept C2778775115 @default.
- W2056531111 hasConcept C2779201268 @default.