Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056543000> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2056543000 endingPage "137" @default.
- W2056543000 startingPage "123" @default.
- W2056543000 abstract "Annals of the New York Academy of SciencesVolume 781, Issue 1 p. 123-137 Routes of Calcium Entry and Extrusion in Turtle Hair Cellsa T. TUCKER, T. TUCKER Department of Neurophysiology University of Wisconsin Medical School Madison, Wisconsin 53706Search for more papers by this authorJ. J. ART, J. J. ART Department of Neurophysiology University of Wisconsin Medical School Madison, Wisconsin 53706Search for more papers by this authorR. FETTIPLACE, Corresponding Author R. FETTIPLACE Department of Neurophysiology University of Wisconsin Medical School Madison, Wisconsin 53706b Address correspondence to Robert Fettiplace, 273 Medical Sciences Building, 1300 University Avenue, Madison, WI 53706.Search for more papers by this author T. TUCKER, T. TUCKER Department of Neurophysiology University of Wisconsin Medical School Madison, Wisconsin 53706Search for more papers by this authorJ. J. ART, J. J. ART Department of Neurophysiology University of Wisconsin Medical School Madison, Wisconsin 53706Search for more papers by this authorR. FETTIPLACE, Corresponding Author R. FETTIPLACE Department of Neurophysiology University of Wisconsin Medical School Madison, Wisconsin 53706b Address correspondence to Robert Fettiplace, 273 Medical Sciences Building, 1300 University Avenue, Madison, WI 53706.Search for more papers by this author First published: June 1996 https://doi.org/10.1111/j.1749-6632.1996.tb15697.xCitations: 8 a This work was supported by a National Institutes of Health grant DC01362 to R. F. and a training fellowship to T. T. from the Neuroscience Program. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Fettiplace, R. 1992. The role of calcium in hair cell transduction. In Sensory Transduction. D. P. Corey & S. D. Roper, Eds. Soc. Gen. Physiol. Ser. 47: 343–356. 2 Lenzi, D. & W. M. Roberts. 1994. Calcium signaling in hair cells: Multiple roles in a compact cell. Curr. Opin. Neurobiol. 4: 496–502. 3 Eatock, R. A., D. P. Corey & A. J. Hudspeth. 1987. Adaptation of mechanoelectrical transduction in hair cells of the bullfrog's sacculus. J. Neurosci. 7: 2821–2836. 4 Crawford, A. C. M. G. Evans & R. Fettiplace. 1989. Activation and adaptation of transducer currents in turtle hair cells. J. Physiol. 419: 405–434. 5 Art, J. J. & R. Fettiplace. 1987. Variation of membrane properties in hair cells isolated from the turtle cochlea. J. Physiol. 385: 207–242. 6 Hudspeth, A. J. & R. S. Lewis. 1988. Kinetic analysis of voltage-and ion-dependent conductances in hair cells of the bullfrog, Rana catesbeiana. J. Physiol. 400: 237–274. 7 Fuchs, P. A., T. Nagai & M. G. Evans. 1988. Electrical tuning of hair cells isolated from the chick cochlea. J. Neurosci. 8: 2460–2467. 8 Roberts, W. M., R. A. Jacobs & A. J. Hudspeth. 1990. Colocalization of ion channels involved in frequency selectivity and synaptic transmission in presynaptic active zones of hair cells. J. Neurosci. 10: 3664–3684. 9 Wu, Y.-C., M. B. Goodman, J. J. Art & R. Fettiplace. 1995. A kinetic description of the calcium-activated potassium channel and its application to electrical tuning of hair cells. Prog. Biophys. Mol. Biol. 63: 131–158. 10 Shigemoto, T. & H. Ohmori. 1991. Muscarinic receptor hyperpolarizes cochlear hair cells of chick by activating Ca2+-activated K+ channels. J. Physiol. 442: 669–690. 11 Fuchs, P. A. & B. W. Murrow. 1992. Cholinergic inhibition of short (outer) hair cells of the chick's cochlea. J. Neurosci. 12: 800–809. 12 Parson, T. D., D. Lenzi, W. Almers & W. M. Roberts. 1994. Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: Capacitance measurements in saccular hair cells. Neuron 13: 875–883. 13 Cortopassi, G. & T. Hutchin. 1994. A molecular and cellular hypothesis for aminoglyco-side-induced deafness. Hear. Res. 78: 27–30. 14 Choi, D. W. 1994. Calcium and excitotoxic neuronal injury. Ann. N. Y. Acad. Sci. 747: 162–171. 15 Ohmori, H. 1988. Mechanical stimulation and fura-2 fluorescence in the hair bundle of dissociated hair cells of the chick. J. Physiol. 399: 115–137. 16 Chabbert, C., G. Geleoc, J. Lehouelleur & A. Sans. 1994. Intracellular calcium variations evoked by mechanical stimulation of mammalian isolated vestibular type I hair cells. Pflueg. Arch. Eur. J. Physiol. 427: 162–168. 17 Ashmore, J. F. & H. Ohmori. 1990. Control of intracellular calcium by ATP in isolated outer hair cells of the guinea pig cochlea. J. Physiol. 428: 109–131. 18 Ikeda, K., Y. Saito, A. Nishiyama & T. Takasaka. 1992. Na+-Ca2+ exchange in isolated cochlear outer hair cells of the guinea pig studied by fluorescence image microscopy. Pflueg. Arch. Eur. J. Physiol. 420: 493–499. 19 Mroz, E. A. & C. Lechene. 1993. Calcium and magnesium transport by isolated goldfish hair cells. Hear. Res. 70: 139–145. 20 Betz, W. J., F. Mao & G. Bewick. 1992. Activity-dependent staining and destaining of living vertebrate motor nerve terminals. J. Neurosci. 12: 363–375. 21 Ohmori, H. 1984. Studies of ionic currents in the isolated vestibular hair cell of the chick. J. Physiol. 350: 561–581. 22 Fuchs, P. A., M. G. Evans & B. W. Murrow. 1990. Calcium currents in hair cells isolated from the cochlea of the chick. J. Physiol. 429: 553–568. 23 Zidanic, M. & P. A. Fuchs. 1995. Kinetic analysis of barium currents in chick cochlear hair cells. Biophys. J. 68: 1323–1336. 24 Art, J. J., R. Fettiplace & Y-C. Wu. 1993. The effects of low-calcium on the voltage-dependent conductances involved in tuning of turtle hair cells. J. Physiol. 470: 109–126. 25 Tucker, T. & R. Fettiplace. 1994. Calcium regulation in turtle cochlear hair cells. Soc. Neurosci. Abstr. 20: 968. 26 Art, J. J., Y.-C. Wu & R. Fettiplace. 1995. The calcium-activated potassium channels of turtle hair cells. J. Gen. Physiol. 105: 49–72. 27 Allbritton, N. L., T. Meyer & L. Stryer. 1992. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258: 1812–1815. 28 Blaustein, M. P., R. Dipolo & J. P. Reeves. 1991. Sodium-calcium exchange: Proceedings of the second international conference. Ann. N. Y. Acad. Sci. 639. 29 Schatzmann, H. 1989. The calcium pump of the surface membrane and the SR. Annu. Rev. Physiol. 51: 473–485. 30 Grover, A. K. & I. Khan. 1992. Calcium pump isoforms: Diversity, selectivity and plasticity. Cell Calcium 13: 9–17. 31 Pedersen, P. L. & E. Carafoli. 1987. Ion motive ATPases. I. Ubiquity, properties and significance for cell function. Trends Biochem. 12: 146–150. 32 Jackson, T. R., S. I. Patterson, O. Thastrup & M. R. Hanley. 1988. A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115–401L neuronal cells. Biochem. J. 253: 81–86. 33 Kass, G. E., S. K. Duddy, G. A. Moore & S. Orrenius. 1989. 2,5-Di-(tert-butyl)-1–4-benzohydroquinone rapidly elevates cytosolic Ca2+ concentration by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. J. Biol. Chem. 264: 15192–15198. 34 Gill, D. L. & S. H. Chueh. 1985. An intracellular (ATP + Mg2+)-dependent calcium pump within the N1E-115 neuronal cell line. J. Biol. Chem. 260: 9289–9297. 35 Penner, R. & E. Neher. 1989. The patch clamp technique in the study of secretion. Trends Neurosci. 12: 159–163. 36 Matlin, K. S. 1992. W(h)ither default? Sorting and polarization in epithelial cells. Curr. Opin. Cell Biol. 4: 623–628. 37 Issa, N. P. & A. J. Hudspeth. 1994. Clustering of Ca2+ and Ca2+-activated K+ channels at fluorescently labeled presynaptic active zones of hair cells. Proc. Natl. Acad. Sci. USA 91: 7578–7582. 38 Sneary, M. G. 1988. Auditory receptor of the red-eared turtle. II. Afferent and efferent synapses and innervcation patterns. J. Comp. Neurol. 276: 588–606. 39 Crawford, A. C. & R. Fettiplace. 1980. The frequency-selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J. Physiol. 306: 79–125. 40 Gleason, G., S. Borges & M. Wilson. 1995. Electrogenic Na-Ca exchange clears Ca2+ loads from retinal amacrine cells in culture. J. Neurosci. 15: 3612–3621. 41 Roberts, W. M., R. A. Jacobs & A. J. Hudspeth. 1991. The hair cell as a presynaptic terminal. Ann. N.Y. Acad. Sci. 635: 221–233. 42 Siegel, J. H. & W. E. Brownell. 1986. Synaptic and Golgi membrane recycling in cochlear hair cells. J. Neurocytol. 15: 311–328. 43 Hackney, C. M., R. Fettiplace & D. N. Furness. 1993. The functional morphology of stereociliary bundles on turtle cochlear hair cells. Hear. Res. 69: 163–175. 44 Kotecha, B. & G. P. Richardson. 1994. Ototoxicity in vitro: Effects of neomycin, gentamycin, amikacin, spectinomycin, neamine, spermine and poly-L-lysine. Hear. Res. 73: 173–184. Citing Literature Volume781, Issue1New Directions in Vestibular ResearchJune 1996Pages 123-137 ReferencesRelatedInformation" @default.
- W2056543000 created "2016-06-24" @default.
- W2056543000 creator A5050229496 @default.
- W2056543000 creator A5068225495 @default.
- W2056543000 creator A5078632676 @default.
- W2056543000 date "1996-06-01" @default.
- W2056543000 modified "2023-10-05" @default.
- W2056543000 title "Routes of Calcium Entry and Extrusion in Turtle Hair Cells<sup>a</sup>" @default.
- W2056543000 cites W1503413261 @default.
- W2056543000 cites W1509834006 @default.
- W2056543000 cites W1537759466 @default.
- W2056543000 cites W1564957024 @default.
- W2056543000 cites W1583482231 @default.
- W2056543000 cites W1598367463 @default.
- W2056543000 cites W1600993549 @default.
- W2056543000 cites W1900274922 @default.
- W2056543000 cites W1967658251 @default.
- W2056543000 cites W1971406825 @default.
- W2056543000 cites W1976381353 @default.
- W2056543000 cites W1976505330 @default.
- W2056543000 cites W1990573399 @default.
- W2056543000 cites W1992779113 @default.
- W2056543000 cites W1994583125 @default.
- W2056543000 cites W1995957068 @default.
- W2056543000 cites W1999703505 @default.
- W2056543000 cites W2007263885 @default.
- W2056543000 cites W2009096910 @default.
- W2056543000 cites W2011851310 @default.
- W2056543000 cites W2015502508 @default.
- W2056543000 cites W2022253074 @default.
- W2056543000 cites W2028173866 @default.
- W2056543000 cites W2037741778 @default.
- W2056543000 cites W2045647470 @default.
- W2056543000 cites W2049076881 @default.
- W2056543000 cites W2066363179 @default.
- W2056543000 cites W2070488469 @default.
- W2056543000 cites W2072185811 @default.
- W2056543000 cites W2073059387 @default.
- W2056543000 cites W2094374404 @default.
- W2056543000 cites W2115172264 @default.
- W2056543000 cites W2117788987 @default.
- W2056543000 cites W2131181796 @default.
- W2056543000 cites W2147403239 @default.
- W2056543000 cites W2164811099 @default.
- W2056543000 cites W2396028691 @default.
- W2056543000 cites W4246520054 @default.
- W2056543000 cites W4300032731 @default.
- W2056543000 doi "https://doi.org/10.1111/j.1749-6632.1996.tb15697.x" @default.
- W2056543000 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8694409" @default.
- W2056543000 hasPublicationYear "1996" @default.
- W2056543000 type Work @default.
- W2056543000 sameAs 2056543000 @default.
- W2056543000 citedByCount "9" @default.
- W2056543000 countsByYear W20565430002014 @default.
- W2056543000 crossrefType "journal-article" @default.
- W2056543000 hasAuthorship W2056543000A5050229496 @default.
- W2056543000 hasAuthorship W2056543000A5068225495 @default.
- W2056543000 hasAuthorship W2056543000A5078632676 @default.
- W2056543000 hasConcept C109766332 @default.
- W2056543000 hasConcept C12554922 @default.
- W2056543000 hasConcept C178790620 @default.
- W2056543000 hasConcept C185592680 @default.
- W2056543000 hasConcept C191897082 @default.
- W2056543000 hasConcept C192562407 @default.
- W2056543000 hasConcept C2778958987 @default.
- W2056543000 hasConcept C505870484 @default.
- W2056543000 hasConcept C519063684 @default.
- W2056543000 hasConcept C86803240 @default.
- W2056543000 hasConceptScore W2056543000C109766332 @default.
- W2056543000 hasConceptScore W2056543000C12554922 @default.
- W2056543000 hasConceptScore W2056543000C178790620 @default.
- W2056543000 hasConceptScore W2056543000C185592680 @default.
- W2056543000 hasConceptScore W2056543000C191897082 @default.
- W2056543000 hasConceptScore W2056543000C192562407 @default.
- W2056543000 hasConceptScore W2056543000C2778958987 @default.
- W2056543000 hasConceptScore W2056543000C505870484 @default.
- W2056543000 hasConceptScore W2056543000C519063684 @default.
- W2056543000 hasConceptScore W2056543000C86803240 @default.
- W2056543000 hasIssue "1" @default.
- W2056543000 hasLocation W20565430001 @default.
- W2056543000 hasLocation W20565430002 @default.
- W2056543000 hasOpenAccess W2056543000 @default.
- W2056543000 hasPrimaryLocation W20565430001 @default.
- W2056543000 hasRelatedWork W178743884 @default.
- W2056543000 hasRelatedWork W1990058038 @default.
- W2056543000 hasRelatedWork W1993472122 @default.
- W2056543000 hasRelatedWork W1993768278 @default.
- W2056543000 hasRelatedWork W2026110468 @default.
- W2056543000 hasRelatedWork W2036875053 @default.
- W2056543000 hasRelatedWork W2062979101 @default.
- W2056543000 hasRelatedWork W2070228801 @default.
- W2056543000 hasRelatedWork W2385673763 @default.
- W2056543000 hasRelatedWork W949016938 @default.
- W2056543000 hasVolume "781" @default.
- W2056543000 isParatext "false" @default.
- W2056543000 isRetracted "false" @default.
- W2056543000 magId "2056543000" @default.
- W2056543000 workType "article" @default.