Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056549352> ?p ?o ?g. }
- W2056549352 endingPage "66" @default.
- W2056549352 startingPage "49" @default.
- W2056549352 abstract "A fully-distributed, multi-physics, multi-scale hydrologic and hydraulic modeling system, WRF-Hydro, is used to assess the potential for skillful flood forecasting based on precipitation inputs derived from the Weather Research and Forecasting (WRF) model and the EUMETSAT Multi-sensor Precipitation Estimates (MPEs). Similar to past studies it was found that WRF model precipitation forecast errors related to model initial conditions are reduced when the three dimensional atmospheric data assimilation (3DVAR) scheme in the WRF model simulations is used. A comparative evaluation of the impact of MPE versus WRF precipitation estimates, both with and without data assimilation, in driving WRF-Hydro simulated streamflow is then made. The ten rainfall–runoff events that occurred in the Black Sea Region were used for testing and evaluation. With the availability of streamflow data across rainfall–runoff events, the calibration is only performed on the Bartin sub-basin using two events and the calibrated parameters are then transferred to other neighboring three ungauged sub-basins in the study area. The rest of the events from all sub-basins are then used to evaluate the performance of the WRF-Hydro system with the calibrated parameters. Following model calibration, the WRF-Hydro system was capable of skillfully reproducing observed flood hydrographs in terms of the volume of the runoff produced and the overall shape of the hydrograph. Streamflow simulation skill was significantly improved for those WRF model simulations where storm precipitation was accurately depicted with respect to timing, location and amount. Accurate streamflow simulations were more evident in WRF model simulations where the 3DVAR scheme was used compared to when it was not used. Because of substantial dry bias feature of MPE, as compared with surface rain gauges, streamflow derived using this precipitation product is in general very poor. Overall, root mean squared errors for runoff were reduced by 22.2% when hydrological model calibration is performed with WRF precipitation. Errors were reduced by 36.9% (above uncalibrated model performance) when both WRF model data assimilation and hydrological model calibration was utilized. Our results also indicated that when assimilated precipitation and model calibration is performed jointly, the calibrated parameters at the gauged sites could be transferred to ungauged neighboring basins where WRF-Hydro reduced mean root mean squared error from 8.31 m3/s to 6.51 m3/s." @default.
- W2056549352 created "2016-06-24" @default.
- W2056549352 creator A5015650888 @default.
- W2056549352 creator A5017554222 @default.
- W2056549352 creator A5035808241 @default.
- W2056549352 creator A5053130626 @default.
- W2056549352 date "2015-04-01" @default.
- W2056549352 modified "2023-10-18" @default.
- W2056549352 title "Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall" @default.
- W2056549352 cites W1497621784 @default.
- W2056549352 cites W1914970033 @default.
- W2056549352 cites W1972961008 @default.
- W2056549352 cites W1974711282 @default.
- W2056549352 cites W1977669764 @default.
- W2056549352 cites W1982981396 @default.
- W2056549352 cites W1986221829 @default.
- W2056549352 cites W1996765553 @default.
- W2056549352 cites W2001655691 @default.
- W2056549352 cites W2014840824 @default.
- W2056549352 cites W2022188534 @default.
- W2056549352 cites W2023778504 @default.
- W2056549352 cites W2024110917 @default.
- W2056549352 cites W2027266013 @default.
- W2056549352 cites W2033813534 @default.
- W2056549352 cites W2035382429 @default.
- W2056549352 cites W2039507572 @default.
- W2056549352 cites W2043042698 @default.
- W2056549352 cites W2046810621 @default.
- W2056549352 cites W2058814250 @default.
- W2056549352 cites W2061746142 @default.
- W2056549352 cites W2069936299 @default.
- W2056549352 cites W2070214585 @default.
- W2056549352 cites W2072654600 @default.
- W2056549352 cites W2078300608 @default.
- W2056549352 cites W2079669237 @default.
- W2056549352 cites W2079773936 @default.
- W2056549352 cites W2085108618 @default.
- W2056549352 cites W2087414485 @default.
- W2056549352 cites W2091164145 @default.
- W2056549352 cites W2101225175 @default.
- W2056549352 cites W2113545938 @default.
- W2056549352 cites W2119007429 @default.
- W2056549352 cites W2137442085 @default.
- W2056549352 cites W2138763184 @default.
- W2056549352 cites W2146207877 @default.
- W2056549352 cites W2160741281 @default.
- W2056549352 cites W2164452634 @default.
- W2056549352 cites W2169744906 @default.
- W2056549352 cites W2175034266 @default.
- W2056549352 cites W2179912439 @default.
- W2056549352 doi "https://doi.org/10.1016/j.jhydrol.2015.01.042" @default.
- W2056549352 hasPublicationYear "2015" @default.
- W2056549352 type Work @default.
- W2056549352 sameAs 2056549352 @default.
- W2056549352 citedByCount "164" @default.
- W2056549352 countsByYear W20565493522015 @default.
- W2056549352 countsByYear W20565493522016 @default.
- W2056549352 countsByYear W20565493522017 @default.
- W2056549352 countsByYear W20565493522018 @default.
- W2056549352 countsByYear W20565493522019 @default.
- W2056549352 countsByYear W20565493522020 @default.
- W2056549352 countsByYear W20565493522021 @default.
- W2056549352 countsByYear W20565493522022 @default.
- W2056549352 countsByYear W20565493522023 @default.
- W2056549352 crossrefType "journal-article" @default.
- W2056549352 hasAuthorship W2056549352A5015650888 @default.
- W2056549352 hasAuthorship W2056549352A5017554222 @default.
- W2056549352 hasAuthorship W2056549352A5035808241 @default.
- W2056549352 hasAuthorship W2056549352A5053130626 @default.
- W2056549352 hasBestOaLocation W20565493522 @default.
- W2056549352 hasConcept C105306849 @default.
- W2056549352 hasConcept C105795698 @default.
- W2056549352 hasConcept C107054158 @default.
- W2056549352 hasConcept C126645576 @default.
- W2056549352 hasConcept C127313418 @default.
- W2056549352 hasConcept C133204551 @default.
- W2056549352 hasConcept C153294291 @default.
- W2056549352 hasConcept C154936535 @default.
- W2056549352 hasConcept C165838908 @default.
- W2056549352 hasConcept C166957645 @default.
- W2056549352 hasConcept C183195422 @default.
- W2056549352 hasConcept C18903297 @default.
- W2056549352 hasConcept C205649164 @default.
- W2056549352 hasConcept C24552861 @default.
- W2056549352 hasConcept C33923547 @default.
- W2056549352 hasConcept C39432304 @default.
- W2056549352 hasConcept C49204034 @default.
- W2056549352 hasConcept C50477045 @default.
- W2056549352 hasConcept C53739315 @default.
- W2056549352 hasConcept C58640448 @default.
- W2056549352 hasConcept C74256435 @default.
- W2056549352 hasConcept C86803240 @default.
- W2056549352 hasConceptScore W2056549352C105306849 @default.
- W2056549352 hasConceptScore W2056549352C105795698 @default.
- W2056549352 hasConceptScore W2056549352C107054158 @default.
- W2056549352 hasConceptScore W2056549352C126645576 @default.
- W2056549352 hasConceptScore W2056549352C127313418 @default.
- W2056549352 hasConceptScore W2056549352C133204551 @default.