Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056552620> ?p ?o ?g. }
- W2056552620 endingPage "181" @default.
- W2056552620 startingPage "171" @default.
- W2056552620 abstract "Extreme learning machine (ELM) is an effective learning algorithm for single-hidden-layer feed-forward neural networks (SLFNNs). Due to its easiness in theory and implementation, ELM has been widely used in many fields. In order to further enhance the generalization performance of ELM, a positive and negative correlation input attributes oriented subnets based double parallel extreme learning machine (PCNCIAOS-DPELM) is proposed in this paper. A salient feature in the PNIAOS-DPELM is that there are two special subnets. In one of the two subnets, the input attributes have a positive correlation to the outputs. In another subnet, the input attributes have a negative correlation to the outputs. The two kinds of input attributes can be obtained by separating the input attributes into two categories using the correlation coefficient analysis. Then according to the categories, the two subnets can be established. The two subnets are based on well-trained auto-associative neural networks (AANNs), which can extract the nonlinear information of the input attributes and remove the redundant information. An advantage in PNIAOS-DPELM is that the proper number of the nodes in the hidden layer can be determined. To test the validity of PNIAOS-DPELM, it is applied to monitoring three chemical processes in steady state. Meanwhile, ELM, double parallel ELM (DP-ELM), and ELM with kernel (ELMK) were developed for comparisons. Experimental results demonstrated that PNIAOS-DPELM could achieve better regression precision and have better stable ability than ELM, DP-ELM, and ELMK did during the generalization phase." @default.
- W2056552620 created "2016-06-24" @default.
- W2056552620 creator A5034064578 @default.
- W2056552620 creator A5045331954 @default.
- W2056552620 creator A5054385364 @default.
- W2056552620 date "2015-10-01" @default.
- W2056552620 modified "2023-10-16" @default.
- W2056552620 title "Positive and negative correlation input attributes oriented subnets based double parallel extreme learning machine (PNIAOS-DPELM) and its application to monitoring chemical processes in steady state" @default.
- W2056552620 cites W1865071834 @default.
- W2056552620 cites W1978578227 @default.
- W2056552620 cites W1983597155 @default.
- W2056552620 cites W1988835709 @default.
- W2056552620 cites W1990938413 @default.
- W2056552620 cites W1993717606 @default.
- W2056552620 cites W2000573205 @default.
- W2056552620 cites W2002728347 @default.
- W2056552620 cites W2004186751 @default.
- W2056552620 cites W2010425280 @default.
- W2056552620 cites W2011430131 @default.
- W2056552620 cites W2017257315 @default.
- W2056552620 cites W2019718627 @default.
- W2056552620 cites W2021378640 @default.
- W2056552620 cites W2026131661 @default.
- W2056552620 cites W2034223886 @default.
- W2056552620 cites W2040604977 @default.
- W2056552620 cites W2050659041 @default.
- W2056552620 cites W2053677366 @default.
- W2056552620 cites W2055173179 @default.
- W2056552620 cites W2067338244 @default.
- W2056552620 cites W2073507324 @default.
- W2056552620 cites W2074553321 @default.
- W2056552620 cites W2078626246 @default.
- W2056552620 cites W2081295504 @default.
- W2056552620 cites W2096987757 @default.
- W2056552620 cites W2098398123 @default.
- W2056552620 cites W2111072639 @default.
- W2056552620 cites W2112408600 @default.
- W2056552620 cites W2122040390 @default.
- W2056552620 cites W2130378394 @default.
- W2056552620 cites W2138484437 @default.
- W2056552620 cites W2141695047 @default.
- W2056552620 cites W2145909766 @default.
- W2056552620 cites W2157595416 @default.
- W2056552620 cites W2163572752 @default.
- W2056552620 cites W2165967751 @default.
- W2056552620 cites W2167982865 @default.
- W2056552620 cites W2168618665 @default.
- W2056552620 cites W2169976759 @default.
- W2056552620 doi "https://doi.org/10.1016/j.neucom.2015.03.007" @default.
- W2056552620 hasPublicationYear "2015" @default.
- W2056552620 type Work @default.
- W2056552620 sameAs 2056552620 @default.
- W2056552620 citedByCount "15" @default.
- W2056552620 countsByYear W20565526202015 @default.
- W2056552620 countsByYear W20565526202016 @default.
- W2056552620 countsByYear W20565526202017 @default.
- W2056552620 countsByYear W20565526202018 @default.
- W2056552620 countsByYear W20565526202019 @default.
- W2056552620 countsByYear W20565526202022 @default.
- W2056552620 crossrefType "journal-article" @default.
- W2056552620 hasAuthorship W2056552620A5034064578 @default.
- W2056552620 hasAuthorship W2056552620A5045331954 @default.
- W2056552620 hasAuthorship W2056552620A5054385364 @default.
- W2056552620 hasConcept C11413529 @default.
- W2056552620 hasConcept C117220453 @default.
- W2056552620 hasConcept C119857082 @default.
- W2056552620 hasConcept C147789679 @default.
- W2056552620 hasConcept C154945302 @default.
- W2056552620 hasConcept C185592680 @default.
- W2056552620 hasConcept C2524010 @default.
- W2056552620 hasConcept C33923547 @default.
- W2056552620 hasConcept C41008148 @default.
- W2056552620 hasConcept C48103436 @default.
- W2056552620 hasConcept C8171440 @default.
- W2056552620 hasConceptScore W2056552620C11413529 @default.
- W2056552620 hasConceptScore W2056552620C117220453 @default.
- W2056552620 hasConceptScore W2056552620C119857082 @default.
- W2056552620 hasConceptScore W2056552620C147789679 @default.
- W2056552620 hasConceptScore W2056552620C154945302 @default.
- W2056552620 hasConceptScore W2056552620C185592680 @default.
- W2056552620 hasConceptScore W2056552620C2524010 @default.
- W2056552620 hasConceptScore W2056552620C33923547 @default.
- W2056552620 hasConceptScore W2056552620C41008148 @default.
- W2056552620 hasConceptScore W2056552620C48103436 @default.
- W2056552620 hasConceptScore W2056552620C8171440 @default.
- W2056552620 hasFunder F4320321001 @default.
- W2056552620 hasLocation W20565526201 @default.
- W2056552620 hasOpenAccess W2056552620 @default.
- W2056552620 hasPrimaryLocation W20565526201 @default.
- W2056552620 hasRelatedWork W2961085424 @default.
- W2056552620 hasRelatedWork W3046775127 @default.
- W2056552620 hasRelatedWork W3107474891 @default.
- W2056552620 hasRelatedWork W3170094116 @default.
- W2056552620 hasRelatedWork W3209574120 @default.
- W2056552620 hasRelatedWork W4205958290 @default.
- W2056552620 hasRelatedWork W4286629047 @default.
- W2056552620 hasRelatedWork W4306321456 @default.
- W2056552620 hasRelatedWork W4306674287 @default.