Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056553383> ?p ?o ?g. }
- W2056553383 endingPage "731" @default.
- W2056553383 startingPage "718" @default.
- W2056553383 abstract "In this work a 3D porous polymeric conducting material is derived from a multi-percolated polymer blend system. The work has focused on the preparation of low surface area porous substrates from polymer blends followed by the deposition of polyaniline conductive polymer (PANI) on the internal porous surface using a layer-by-layer (LbL) technique. The approach reported here allows for the percolation threshold concentration of polyaniline conductive polymer (PANI) to be reduced to values of no more than 0.19%. Furthermore, depending on the amount of PANI deposited, the conductivity of the porous substrate can be controlled from 10−15 S cm−1 to 10−3 S cm−1. Ternary and quaternary multi-percolated systems comprised of high-density polyethylene (HDPE), polystyrene (PS), poly(methyl methacrylate) (PMMA) and poly(vinylidene fluoride) (PVDF) are prepared by melt mixing and subsequently annealed in order to obtain large interconnected phases. Selective extraction of PS, PMMA and PVDF result in a fully interconnected porous HDPE substrate of ultra-low surface area and highly uniform sized channels. This provides an ideal substrate for subsequent polyaniline (PANI) addition. Using a layer-by-layer (LbL) approach, alternating poly(styrene sulfonate) (PSS)/PANI layers are deposited on the internal surface of the 3-dimensional porous polymer substrate. The PANI and sodium poly(styrene sulfonate) (PSS) both adopt an inter-diffused network conformation on the surface. The sequential deposition of PSS and PANI has been studied in detail and the mass deposition profile demonstrates oscillatory behavior following a zigzag-type pattern. The presence of salt in the deposition solution results in a more uniform deposition and more thickly deposited PSS/PANI layers. The conductivity of these samples was measured and the conductivity can be controlled from 10−15 S cm−1 to 10−5 S cm−1 depending on the number of deposited layers. In the case of a porous sample which can be crushed, applying a load to the substrate can be used as an additional control parameter. In that sample a high load results in higher conductivity with values as high as 10−3 S cm−1 obtained. The work described above has focused on very low surface area porous substrates in order to generate a conductive device with the lowest possible concentration values of polyaniline, but high surface area substrates can also be readily prepared using this approach." @default.
- W2056553383 created "2016-06-24" @default.
- W2056553383 creator A5017378055 @default.
- W2056553383 creator A5018640279 @default.
- W2056553383 date "2011-02-03" @default.
- W2056553383 modified "2023-09-30" @default.
- W2056553383 title "3D porous polymeric conductive material prepared using LbL deposition" @default.
- W2056553383 cites W1963573780 @default.
- W2056553383 cites W1970666225 @default.
- W2056553383 cites W1971518543 @default.
- W2056553383 cites W1973987784 @default.
- W2056553383 cites W1975526045 @default.
- W2056553383 cites W1977587645 @default.
- W2056553383 cites W1978665676 @default.
- W2056553383 cites W1982936090 @default.
- W2056553383 cites W1986848697 @default.
- W2056553383 cites W1987371185 @default.
- W2056553383 cites W1988947046 @default.
- W2056553383 cites W1990486870 @default.
- W2056553383 cites W1993556399 @default.
- W2056553383 cites W1993858595 @default.
- W2056553383 cites W1994179563 @default.
- W2056553383 cites W1994831026 @default.
- W2056553383 cites W1996677976 @default.
- W2056553383 cites W2000475625 @default.
- W2056553383 cites W2000512380 @default.
- W2056553383 cites W2000625778 @default.
- W2056553383 cites W2005062196 @default.
- W2056553383 cites W2005528310 @default.
- W2056553383 cites W2007867308 @default.
- W2056553383 cites W2008722942 @default.
- W2056553383 cites W2010872619 @default.
- W2056553383 cites W2015240500 @default.
- W2056553383 cites W2016118577 @default.
- W2056553383 cites W2020767241 @default.
- W2056553383 cites W2022982146 @default.
- W2056553383 cites W2024849741 @default.
- W2056553383 cites W2028823118 @default.
- W2056553383 cites W2029851331 @default.
- W2056553383 cites W2030366075 @default.
- W2056553383 cites W2038961225 @default.
- W2056553383 cites W2039248501 @default.
- W2056553383 cites W2042324535 @default.
- W2056553383 cites W2042962466 @default.
- W2056553383 cites W2043444741 @default.
- W2056553383 cites W2044449475 @default.
- W2056553383 cites W2044537854 @default.
- W2056553383 cites W2046380234 @default.
- W2056553383 cites W2048924026 @default.
- W2056553383 cites W2051216719 @default.
- W2056553383 cites W2051494379 @default.
- W2056553383 cites W2053743152 @default.
- W2056553383 cites W2055913747 @default.
- W2056553383 cites W2056618936 @default.
- W2056553383 cites W2057365864 @default.
- W2056553383 cites W2058428306 @default.
- W2056553383 cites W2058846468 @default.
- W2056553383 cites W2063487698 @default.
- W2056553383 cites W2066908728 @default.
- W2056553383 cites W2067779785 @default.
- W2056553383 cites W2071376734 @default.
- W2056553383 cites W2071387003 @default.
- W2056553383 cites W2079560563 @default.
- W2056553383 cites W2084532341 @default.
- W2056553383 cites W2088402526 @default.
- W2056553383 cites W2088860730 @default.
- W2056553383 cites W2094913174 @default.
- W2056553383 cites W2095301916 @default.
- W2056553383 cites W2095414843 @default.
- W2056553383 cites W2096586994 @default.
- W2056553383 cites W2113966967 @default.
- W2056553383 cites W2117208350 @default.
- W2056553383 cites W2137974660 @default.
- W2056553383 cites W2144472720 @default.
- W2056553383 cites W2147043988 @default.
- W2056553383 cites W2162357080 @default.
- W2056553383 cites W2166806803 @default.
- W2056553383 cites W2169055580 @default.
- W2056553383 cites W2172949807 @default.
- W2056553383 cites W3023854223 @default.
- W2056553383 cites W621291561 @default.
- W2056553383 doi "https://doi.org/10.1016/j.polymer.2010.12.005" @default.
- W2056553383 hasPublicationYear "2011" @default.
- W2056553383 type Work @default.
- W2056553383 sameAs 2056553383 @default.
- W2056553383 citedByCount "24" @default.
- W2056553383 countsByYear W20565533832012 @default.
- W2056553383 countsByYear W20565533832013 @default.
- W2056553383 countsByYear W20565533832014 @default.
- W2056553383 countsByYear W20565533832015 @default.
- W2056553383 countsByYear W20565533832016 @default.
- W2056553383 countsByYear W20565533832017 @default.
- W2056553383 countsByYear W20565533832020 @default.
- W2056553383 countsByYear W20565533832021 @default.
- W2056553383 countsByYear W20565533832022 @default.
- W2056553383 countsByYear W20565533832023 @default.
- W2056553383 crossrefType "journal-article" @default.
- W2056553383 hasAuthorship W2056553383A5017378055 @default.