Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056554854> ?p ?o ?g. }
- W2056554854 endingPage "1530002" @default.
- W2056554854 startingPage "1530002" @default.
- W2056554854 abstract "Filamentous protein structures are of high relevance for the normal functioning of the cell, where they provide the structural component for the cytoskeleton, but are also implicated in the pathogenesis of many disease states. The self-assembly of these supra-molecular structures from monomeric proteins has been studied extensively in the past 50 years and much interest has focused on elucidating the microscopic events that drive linear growth phenomena in a biological setting. Master equations have proven to be particularly fruitful in this context, allowing specific assembly mechanisms to be linked directly to experimental observations of filamentous growth. Recently, these approaches have increasingly been applied to aberrant protein polymerization, elucidating potential implications for controlling or combating the formation of pathological filamentous structures. This article reviews recent theoretical advances in the field of filamentous growth phenomena through the use of the master-equation formalism. We use perturbation and self-consistent methods for obtaining analytical solutions to the rate equations describing fibrillar growth and show how the resulting closed-form expressions can be used to shed light on the general physical laws underlying this complex phenomenon. We also present a connection between the underlying ideas of the self-consistent analysis of filamentous growth and the perturbative renormalization group." @default.
- W2056554854 created "2016-06-24" @default.
- W2056554854 creator A5006983623 @default.
- W2056554854 creator A5041530719 @default.
- W2056554854 date "2014-12-22" @default.
- W2056554854 modified "2023-09-25" @default.
- W2056554854 title "Kinetic theory of protein filament growth: Self-consistent methods and perturbative techniques" @default.
- W2056554854 cites W1481393922 @default.
- W2056554854 cites W1504186711 @default.
- W2056554854 cites W1587588813 @default.
- W2056554854 cites W1605957976 @default.
- W2056554854 cites W169891055 @default.
- W2056554854 cites W1963507186 @default.
- W2056554854 cites W1963513403 @default.
- W2056554854 cites W1965420960 @default.
- W2056554854 cites W1967332679 @default.
- W2056554854 cites W1970154329 @default.
- W2056554854 cites W1970516691 @default.
- W2056554854 cites W1970577444 @default.
- W2056554854 cites W1971960647 @default.
- W2056554854 cites W1972011321 @default.
- W2056554854 cites W1973897761 @default.
- W2056554854 cites W1980339633 @default.
- W2056554854 cites W1980340664 @default.
- W2056554854 cites W1981458288 @default.
- W2056554854 cites W1981470444 @default.
- W2056554854 cites W1981647774 @default.
- W2056554854 cites W1985474993 @default.
- W2056554854 cites W1986040929 @default.
- W2056554854 cites W1988385171 @default.
- W2056554854 cites W1991540499 @default.
- W2056554854 cites W1992485812 @default.
- W2056554854 cites W1993485613 @default.
- W2056554854 cites W1994569931 @default.
- W2056554854 cites W1996244958 @default.
- W2056554854 cites W1998269242 @default.
- W2056554854 cites W2000421221 @default.
- W2056554854 cites W2005212584 @default.
- W2056554854 cites W2009237819 @default.
- W2056554854 cites W2009556855 @default.
- W2056554854 cites W2010462701 @default.
- W2056554854 cites W2012184588 @default.
- W2056554854 cites W2022492503 @default.
- W2056554854 cites W2024908520 @default.
- W2056554854 cites W2025139686 @default.
- W2056554854 cites W2025433912 @default.
- W2056554854 cites W2025505442 @default.
- W2056554854 cites W2027398076 @default.
- W2056554854 cites W2030187848 @default.
- W2056554854 cites W2030325989 @default.
- W2056554854 cites W2032587980 @default.
- W2056554854 cites W2033433194 @default.
- W2056554854 cites W2035438422 @default.
- W2056554854 cites W2041537319 @default.
- W2056554854 cites W2042214383 @default.
- W2056554854 cites W2047137396 @default.
- W2056554854 cites W2049421402 @default.
- W2056554854 cites W2050207511 @default.
- W2056554854 cites W2055668916 @default.
- W2056554854 cites W2056320034 @default.
- W2056554854 cites W2057821737 @default.
- W2056554854 cites W2059804089 @default.
- W2056554854 cites W2059903782 @default.
- W2056554854 cites W2061657038 @default.
- W2056554854 cites W2062218714 @default.
- W2056554854 cites W2066662991 @default.
- W2056554854 cites W2068202960 @default.
- W2056554854 cites W2068334126 @default.
- W2056554854 cites W2069350490 @default.
- W2056554854 cites W2070380111 @default.
- W2056554854 cites W2071609822 @default.
- W2056554854 cites W2073775320 @default.
- W2056554854 cites W2078010704 @default.
- W2056554854 cites W2079060528 @default.
- W2056554854 cites W2084111645 @default.
- W2056554854 cites W2088395760 @default.
- W2056554854 cites W2088577455 @default.
- W2056554854 cites W2091493766 @default.
- W2056554854 cites W2092305593 @default.
- W2056554854 cites W2092625134 @default.
- W2056554854 cites W2094881767 @default.
- W2056554854 cites W2095326138 @default.
- W2056554854 cites W2110596117 @default.
- W2056554854 cites W2122960770 @default.
- W2056554854 cites W2123158829 @default.
- W2056554854 cites W2128879174 @default.
- W2056554854 cites W2129320185 @default.
- W2056554854 cites W2137276641 @default.
- W2056554854 cites W2140422710 @default.
- W2056554854 cites W2144575860 @default.
- W2056554854 cites W2154807901 @default.
- W2056554854 cites W2165186407 @default.
- W2056554854 cites W2313020666 @default.
- W2056554854 cites W2322972210 @default.
- W2056554854 cites W2325436442 @default.
- W2056554854 cites W2334555401 @default.
- W2056554854 cites W2609724571 @default.
- W2056554854 cites W2610246660 @default.