Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056565096> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2056565096 endingPage "323" @default.
- W2056565096 startingPage "310" @default.
- W2056565096 abstract "In this study, the authors propose a novel method for removing mixed (mixture of impulse and Gaussian) multi-channel noise from multi-channel digital images based on a modified version of the algorithm introduced by Struyf and Rousseeuw (Comput. Stat. Data Anal. (2000), 34, pp. 415–426) for finding approximate halfspace deepest location (Tukey's median). Denoising results of this new nonlinear spatial domain filtering method applied to benchmark images corrupted by multi-channel mixed noise outperform currently used spatial domain filters and state-of-the-art wavelet transform domain filters in terms of both peak signal-to-noise ratio and visual quality. Unlike most of the existing algorithms which remove the noise from multi-channel digital images on each of the channels separately, our method, because of its multivariate/multi-dimensional nature, eliminates the noise on all channels simultaneously without their separation, thus preserving the spectral correlation between channels in a multi-channel image. Proposed denoising method is very effective for removal of very wide range of powers of mixed multi-channel noise, but can be also successfully implemented for reduction of other forms of multi-channel noise since it is independent of the source or distribution of the noise." @default.
- W2056565096 created "2016-06-24" @default.
- W2056565096 creator A5021369488 @default.
- W2056565096 creator A5030366497 @default.
- W2056565096 creator A5076481813 @default.
- W2056565096 date "2013-06-01" @default.
- W2056565096 modified "2023-10-17" @default.
- W2056565096 title "Mixed noise removal filter for multi‐channel images based on halfspace deepest location" @default.
- W2056565096 cites W1529933798 @default.
- W2056565096 cites W1992293960 @default.
- W2056565096 cites W2000785498 @default.
- W2056565096 cites W2011482339 @default.
- W2056565096 cites W2016440615 @default.
- W2056565096 cites W2017113750 @default.
- W2056565096 cites W2018332268 @default.
- W2056565096 cites W2034053737 @default.
- W2056565096 cites W2039892753 @default.
- W2056565096 cites W2044907595 @default.
- W2056565096 cites W2056370875 @default.
- W2056565096 cites W2061896116 @default.
- W2056565096 cites W2082622657 @default.
- W2056565096 cites W2087254073 @default.
- W2056565096 cites W2093446683 @default.
- W2056565096 cites W2113945798 @default.
- W2056565096 cites W2118414077 @default.
- W2056565096 cites W2131357767 @default.
- W2056565096 cites W2142574221 @default.
- W2056565096 cites W2144451417 @default.
- W2056565096 cites W2153834080 @default.
- W2056565096 cites W2159558889 @default.
- W2056565096 cites W2161718039 @default.
- W2056565096 cites W3102187347 @default.
- W2056565096 cites W4256540010 @default.
- W2056565096 doi "https://doi.org/10.1049/iet-ipr.2012.0105" @default.
- W2056565096 hasPublicationYear "2013" @default.
- W2056565096 type Work @default.
- W2056565096 sameAs 2056565096 @default.
- W2056565096 citedByCount "11" @default.
- W2056565096 countsByYear W20565650962013 @default.
- W2056565096 countsByYear W20565650962014 @default.
- W2056565096 countsByYear W20565650962015 @default.
- W2056565096 countsByYear W20565650962016 @default.
- W2056565096 countsByYear W20565650962017 @default.
- W2056565096 countsByYear W20565650962018 @default.
- W2056565096 countsByYear W20565650962020 @default.
- W2056565096 countsByYear W20565650962021 @default.
- W2056565096 countsByYear W20565650962022 @default.
- W2056565096 crossrefType "journal-article" @default.
- W2056565096 hasAuthorship W2056565096A5021369488 @default.
- W2056565096 hasAuthorship W2056565096A5030366497 @default.
- W2056565096 hasAuthorship W2056565096A5076481813 @default.
- W2056565096 hasConcept C106131492 @default.
- W2056565096 hasConcept C115961682 @default.
- W2056565096 hasConcept C121332964 @default.
- W2056565096 hasConcept C127162648 @default.
- W2056565096 hasConcept C127313418 @default.
- W2056565096 hasConcept C24890656 @default.
- W2056565096 hasConcept C31972630 @default.
- W2056565096 hasConcept C41008148 @default.
- W2056565096 hasConcept C76155785 @default.
- W2056565096 hasConcept C99498987 @default.
- W2056565096 hasConceptScore W2056565096C106131492 @default.
- W2056565096 hasConceptScore W2056565096C115961682 @default.
- W2056565096 hasConceptScore W2056565096C121332964 @default.
- W2056565096 hasConceptScore W2056565096C127162648 @default.
- W2056565096 hasConceptScore W2056565096C127313418 @default.
- W2056565096 hasConceptScore W2056565096C24890656 @default.
- W2056565096 hasConceptScore W2056565096C31972630 @default.
- W2056565096 hasConceptScore W2056565096C41008148 @default.
- W2056565096 hasConceptScore W2056565096C76155785 @default.
- W2056565096 hasConceptScore W2056565096C99498987 @default.
- W2056565096 hasIssue "4" @default.
- W2056565096 hasLocation W20565650961 @default.
- W2056565096 hasOpenAccess W2056565096 @default.
- W2056565096 hasPrimaryLocation W20565650961 @default.
- W2056565096 hasRelatedWork W185733981 @default.
- W2056565096 hasRelatedWork W2000794185 @default.
- W2056565096 hasRelatedWork W2020364089 @default.
- W2056565096 hasRelatedWork W2032850700 @default.
- W2056565096 hasRelatedWork W2113644136 @default.
- W2056565096 hasRelatedWork W2279382477 @default.
- W2056565096 hasRelatedWork W2359317704 @default.
- W2056565096 hasRelatedWork W2367330275 @default.
- W2056565096 hasRelatedWork W2460185273 @default.
- W2056565096 hasRelatedWork W2899084033 @default.
- W2056565096 hasVolume "7" @default.
- W2056565096 isParatext "false" @default.
- W2056565096 isRetracted "false" @default.
- W2056565096 magId "2056565096" @default.
- W2056565096 workType "article" @default.