Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056579682> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2056579682 endingPage "451" @default.
- W2056579682 startingPage "419" @default.
- W2056579682 abstract "Nous prouvons que on peut obtenir fibrés naturels des algèbres de Lie so(s+1,s+1), su(s+1,s+1) et sl(2s+2,ℝ) sur variétés s-Kähler de rang 2. Ces fibrés ont connexions naturelles dont les sections globales généralisent les opérateurs de Lefschetz de la géométrie de Kähler et agissent d’une façon naturelle sur la cohomologie. Pour première application nous construisons une représentation irréductible d’une forme rationnelle de su(s+1,s+1) sur les classes de Hodge (rationelles) de variétés abéliennes dont la matrice des periodes est rationelle." @default.
- W2056579682 created "2016-06-24" @default.
- W2056579682 creator A5032773859 @default.
- W2056579682 creator A5065899692 @default.
- W2056579682 date "2010-01-01" @default.
- W2056579682 modified "2023-10-18" @default.
- W2056579682 title "Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties" @default.
- W2056579682 cites W10406910 @default.
- W2056579682 cites W1515192744 @default.
- W2056579682 cites W1611826104 @default.
- W2056579682 cites W1679185455 @default.
- W2056579682 cites W1989975455 @default.
- W2056579682 cites W2040208162 @default.
- W2056579682 cites W2051858300 @default.
- W2056579682 cites W2065738679 @default.
- W2056579682 cites W2081343451 @default.
- W2056579682 cites W2094017794 @default.
- W2056579682 cites W2098960371 @default.
- W2056579682 cites W2129257648 @default.
- W2056579682 cites W2339654967 @default.
- W2056579682 cites W3105726585 @default.
- W2056579682 doi "https://doi.org/10.5802/afst.1249" @default.
- W2056579682 hasPublicationYear "2010" @default.
- W2056579682 type Work @default.
- W2056579682 sameAs 2056579682 @default.
- W2056579682 citedByCount "0" @default.
- W2056579682 crossrefType "journal-article" @default.
- W2056579682 hasAuthorship W2056579682A5032773859 @default.
- W2056579682 hasAuthorship W2056579682A5065899692 @default.
- W2056579682 hasBestOaLocation W20565796821 @default.
- W2056579682 hasConcept C136119220 @default.
- W2056579682 hasConcept C136170076 @default.
- W2056579682 hasConcept C138885662 @default.
- W2056579682 hasConcept C15708023 @default.
- W2056579682 hasConcept C202444582 @default.
- W2056579682 hasConcept C33923547 @default.
- W2056579682 hasConceptScore W2056579682C136119220 @default.
- W2056579682 hasConceptScore W2056579682C136170076 @default.
- W2056579682 hasConceptScore W2056579682C138885662 @default.
- W2056579682 hasConceptScore W2056579682C15708023 @default.
- W2056579682 hasConceptScore W2056579682C202444582 @default.
- W2056579682 hasConceptScore W2056579682C33923547 @default.
- W2056579682 hasIssue "2" @default.
- W2056579682 hasLocation W20565796821 @default.
- W2056579682 hasLocation W20565796822 @default.
- W2056579682 hasLocation W20565796823 @default.
- W2056579682 hasOpenAccess W2056579682 @default.
- W2056579682 hasPrimaryLocation W20565796821 @default.
- W2056579682 hasRelatedWork W1497986648 @default.
- W2056579682 hasRelatedWork W1678370088 @default.
- W2056579682 hasRelatedWork W2006990530 @default.
- W2056579682 hasRelatedWork W2021494526 @default.
- W2056579682 hasRelatedWork W2032361691 @default.
- W2056579682 hasRelatedWork W2072841111 @default.
- W2056579682 hasRelatedWork W2149376139 @default.
- W2056579682 hasRelatedWork W2963456550 @default.
- W2056579682 hasRelatedWork W3083642434 @default.
- W2056579682 hasRelatedWork W2056205479 @default.
- W2056579682 hasVolume "19" @default.
- W2056579682 isParatext "false" @default.
- W2056579682 isRetracted "false" @default.
- W2056579682 magId "2056579682" @default.
- W2056579682 workType "article" @default.