Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056583019> ?p ?o ?g. }
- W2056583019 endingPage "669" @default.
- W2056583019 startingPage "655" @default.
- W2056583019 abstract "Signal classification is an important issue in many branches of science and engineering. In signal classification, a feature of the signals is often selected for similarity comparison. A distance metric must then be established to measure the dissimilarities between different signal features. Due to the natural characteristics of dynamic systems, the power spectral density (PSD) of a signal is often used as a feature to facilitate classification. We reason in this paper that PSD matrices have structural constraints and that they describe a manifold in the signal space. Thus, instead of the widely used Euclidean distance (ED), a more appropriate measure is the Riemannian distance (RD) on the manifold. Here, we develop closed-form expressions of the RD between two PSD matrices on the manifold and study some of the properties. We further show how an optimum weighting matrix can be developed for the application of RD to signal classification. These new distance measures are then applied to the classification of electroencephalogram (EEG) signals for the determination of sleep states and the results are highly encouraging." @default.
- W2056583019 created "2016-06-24" @default.
- W2056583019 creator A5003193008 @default.
- W2056583019 creator A5047640717 @default.
- W2056583019 date "2013-08-01" @default.
- W2056583019 modified "2023-10-16" @default.
- W2056583019 title "Riemannian Distances for Signal Classification by Power Spectral Density" @default.
- W2056583019 cites W1520168181 @default.
- W2056583019 cites W1561929708 @default.
- W2056583019 cites W1564947197 @default.
- W2056583019 cites W1965555277 @default.
- W2056583019 cites W1983496390 @default.
- W2056583019 cites W1994048562 @default.
- W2056583019 cites W2032236594 @default.
- W2056583019 cites W2040025748 @default.
- W2056583019 cites W2048192550 @default.
- W2056583019 cites W2075092589 @default.
- W2056583019 cites W2084415034 @default.
- W2056583019 cites W2096597330 @default.
- W2056583019 cites W2109083957 @default.
- W2056583019 cites W2112353805 @default.
- W2056583019 cites W2116022929 @default.
- W2056583019 cites W2118884921 @default.
- W2056583019 cites W2121888382 @default.
- W2056583019 cites W2135280991 @default.
- W2056583019 cites W2144395099 @default.
- W2056583019 cites W2148068496 @default.
- W2056583019 cites W2149980531 @default.
- W2056583019 cites W2154664200 @default.
- W2056583019 cites W2156529323 @default.
- W2056583019 cites W2167044696 @default.
- W2056583019 cites W2496344256 @default.
- W2056583019 cites W396694640 @default.
- W2056583019 cites W4242522601 @default.
- W2056583019 cites W4249845637 @default.
- W2056583019 cites W4256217162 @default.
- W2056583019 cites W4293163450 @default.
- W2056583019 doi "https://doi.org/10.1109/jstsp.2013.2260320" @default.
- W2056583019 hasPublicationYear "2013" @default.
- W2056583019 type Work @default.
- W2056583019 sameAs 2056583019 @default.
- W2056583019 citedByCount "50" @default.
- W2056583019 countsByYear W20565830192013 @default.
- W2056583019 countsByYear W20565830192014 @default.
- W2056583019 countsByYear W20565830192015 @default.
- W2056583019 countsByYear W20565830192016 @default.
- W2056583019 countsByYear W20565830192017 @default.
- W2056583019 countsByYear W20565830192018 @default.
- W2056583019 countsByYear W20565830192019 @default.
- W2056583019 countsByYear W20565830192020 @default.
- W2056583019 countsByYear W20565830192021 @default.
- W2056583019 countsByYear W20565830192022 @default.
- W2056583019 countsByYear W20565830192023 @default.
- W2056583019 crossrefType "journal-article" @default.
- W2056583019 hasAuthorship W2056583019A5003193008 @default.
- W2056583019 hasAuthorship W2056583019A5047640717 @default.
- W2056583019 hasConcept C103278499 @default.
- W2056583019 hasConcept C105795698 @default.
- W2056583019 hasConcept C109546454 @default.
- W2056583019 hasConcept C111208986 @default.
- W2056583019 hasConcept C11413529 @default.
- W2056583019 hasConcept C115961682 @default.
- W2056583019 hasConcept C120174047 @default.
- W2056583019 hasConcept C121332964 @default.
- W2056583019 hasConcept C124101348 @default.
- W2056583019 hasConcept C12520029 @default.
- W2056583019 hasConcept C127413603 @default.
- W2056583019 hasConcept C134306372 @default.
- W2056583019 hasConcept C138885662 @default.
- W2056583019 hasConcept C151876577 @default.
- W2056583019 hasConcept C153180895 @default.
- W2056583019 hasConcept C154945302 @default.
- W2056583019 hasConcept C162324750 @default.
- W2056583019 hasConcept C168110828 @default.
- W2056583019 hasConcept C169391604 @default.
- W2056583019 hasConcept C176217482 @default.
- W2056583019 hasConcept C183115368 @default.
- W2056583019 hasConcept C186450821 @default.
- W2056583019 hasConcept C195065555 @default.
- W2056583019 hasConcept C199360897 @default.
- W2056583019 hasConcept C21547014 @default.
- W2056583019 hasConcept C24890656 @default.
- W2056583019 hasConcept C2524010 @default.
- W2056583019 hasConcept C2639959 @default.
- W2056583019 hasConcept C2776401178 @default.
- W2056583019 hasConcept C2779843651 @default.
- W2056583019 hasConcept C2780009758 @default.
- W2056583019 hasConcept C33923547 @default.
- W2056583019 hasConcept C41008148 @default.
- W2056583019 hasConcept C41895202 @default.
- W2056583019 hasConcept C529865628 @default.
- W2056583019 hasConcept C70518039 @default.
- W2056583019 hasConcept C78519656 @default.
- W2056583019 hasConceptScore W2056583019C103278499 @default.
- W2056583019 hasConceptScore W2056583019C105795698 @default.
- W2056583019 hasConceptScore W2056583019C109546454 @default.
- W2056583019 hasConceptScore W2056583019C111208986 @default.
- W2056583019 hasConceptScore W2056583019C11413529 @default.