Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056594451> ?p ?o ?g. }
- W2056594451 endingPage "4320" @default.
- W2056594451 startingPage "4309" @default.
- W2056594451 abstract "Growing interest in personalised medicine and targeted therapies is leading to an increase in the importance of subgroup analyses. If it is planned to view treatment comparisons in both a predefined subgroup and the full population as co‐primary analyses, it is important that the statistical analysis controls the familywise type I error rate. Spiessens and Debois (Cont. Clin. Trials, 2010, 31, 647–656) recently proposed an approach specific for this setting, which incorporates an assumption about the correlation based on the known sizes of the different groups, and showed that this is more powerful than generic multiple comparisons procedures such as the Bonferroni correction. If recruitment is slow relative to the length of time taken to observe the outcome, it may be efficient to conduct an interim analysis. In this paper, we propose a new method for an adaptive clinical trial with co‐primary analyses in a predefined subgroup and the full population based on the conditional error function principle. The methodology is generic in that we assume test statistics can be taken to be normally distributed rather than making any specific distributional assumptions about individual patient data. In a simulation study, we demonstrate that the new method is more powerful than previously suggested analysis strategies. Furthermore, we show how the method can be extended to situations when the selection is not based on the final but on an early outcome. We use a case study in a targeted therapy in oncology to illustrate the use of the proposed methodology with non‐normal outcomes. Copyright © 2012 John Wiley & Sons, Ltd." @default.
- W2056594451 created "2016-06-24" @default.
- W2056594451 creator A5050428053 @default.
- W2056594451 creator A5057325416 @default.
- W2056594451 creator A5090276267 @default.
- W2056594451 date "2012-08-03" @default.
- W2056594451 modified "2023-09-27" @default.
- W2056594451 title "A conditional error function approach for subgroup selection in adaptive clinical trials" @default.
- W2056594451 cites W1968632660 @default.
- W2056594451 cites W1982767331 @default.
- W2056594451 cites W1996520553 @default.
- W2056594451 cites W2002442503 @default.
- W2056594451 cites W2003336670 @default.
- W2056594451 cites W2006414073 @default.
- W2056594451 cites W2012757283 @default.
- W2056594451 cites W2022489404 @default.
- W2056594451 cites W2028582072 @default.
- W2056594451 cites W2033969681 @default.
- W2056594451 cites W2048265454 @default.
- W2056594451 cites W2048935051 @default.
- W2056594451 cites W2069607843 @default.
- W2056594451 cites W2074801739 @default.
- W2056594451 cites W2099107563 @default.
- W2056594451 cites W2110443067 @default.
- W2056594451 cites W2114850871 @default.
- W2056594451 cites W2115840402 @default.
- W2056594451 cites W2120148445 @default.
- W2056594451 cites W2120300678 @default.
- W2056594451 cites W2123865203 @default.
- W2056594451 cites W2127182852 @default.
- W2056594451 cites W2127277181 @default.
- W2056594451 cites W2153646525 @default.
- W2056594451 cites W2154735846 @default.
- W2056594451 cites W2166485607 @default.
- W2056594451 cites W2169741610 @default.
- W2056594451 cites W2331139255 @default.
- W2056594451 cites W396053900 @default.
- W2056594451 doi "https://doi.org/10.1002/sim.5541" @default.
- W2056594451 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22865774" @default.
- W2056594451 hasPublicationYear "2012" @default.
- W2056594451 type Work @default.
- W2056594451 sameAs 2056594451 @default.
- W2056594451 citedByCount "87" @default.
- W2056594451 countsByYear W20565944512013 @default.
- W2056594451 countsByYear W20565944512014 @default.
- W2056594451 countsByYear W20565944512015 @default.
- W2056594451 countsByYear W20565944512016 @default.
- W2056594451 countsByYear W20565944512017 @default.
- W2056594451 countsByYear W20565944512018 @default.
- W2056594451 countsByYear W20565944512019 @default.
- W2056594451 countsByYear W20565944512020 @default.
- W2056594451 countsByYear W20565944512021 @default.
- W2056594451 countsByYear W20565944512022 @default.
- W2056594451 countsByYear W20565944512023 @default.
- W2056594451 crossrefType "journal-article" @default.
- W2056594451 hasAuthorship W2056594451A5050428053 @default.
- W2056594451 hasAuthorship W2056594451A5057325416 @default.
- W2056594451 hasAuthorship W2056594451A5090276267 @default.
- W2056594451 hasConcept C105795698 @default.
- W2056594451 hasConcept C119857082 @default.
- W2056594451 hasConcept C126322002 @default.
- W2056594451 hasConcept C127808970 @default.
- W2056594451 hasConcept C14036430 @default.
- W2056594451 hasConcept C144237770 @default.
- W2056594451 hasConcept C148220186 @default.
- W2056594451 hasConcept C149782125 @default.
- W2056594451 hasConcept C154945302 @default.
- W2056594451 hasConcept C183905921 @default.
- W2056594451 hasConcept C187960798 @default.
- W2056594451 hasConcept C2908647359 @default.
- W2056594451 hasConcept C33923547 @default.
- W2056594451 hasConcept C40696583 @default.
- W2056594451 hasConcept C40969351 @default.
- W2056594451 hasConcept C41008148 @default.
- W2056594451 hasConcept C44249647 @default.
- W2056594451 hasConcept C535046627 @default.
- W2056594451 hasConcept C61943457 @default.
- W2056594451 hasConcept C71924100 @default.
- W2056594451 hasConcept C78458016 @default.
- W2056594451 hasConcept C81917197 @default.
- W2056594451 hasConcept C86803240 @default.
- W2056594451 hasConcept C99454951 @default.
- W2056594451 hasConceptScore W2056594451C105795698 @default.
- W2056594451 hasConceptScore W2056594451C119857082 @default.
- W2056594451 hasConceptScore W2056594451C126322002 @default.
- W2056594451 hasConceptScore W2056594451C127808970 @default.
- W2056594451 hasConceptScore W2056594451C14036430 @default.
- W2056594451 hasConceptScore W2056594451C144237770 @default.
- W2056594451 hasConceptScore W2056594451C148220186 @default.
- W2056594451 hasConceptScore W2056594451C149782125 @default.
- W2056594451 hasConceptScore W2056594451C154945302 @default.
- W2056594451 hasConceptScore W2056594451C183905921 @default.
- W2056594451 hasConceptScore W2056594451C187960798 @default.
- W2056594451 hasConceptScore W2056594451C2908647359 @default.
- W2056594451 hasConceptScore W2056594451C33923547 @default.
- W2056594451 hasConceptScore W2056594451C40696583 @default.
- W2056594451 hasConceptScore W2056594451C40969351 @default.
- W2056594451 hasConceptScore W2056594451C41008148 @default.