Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056712596> ?p ?o ?g. }
- W2056712596 abstract "The homogeneous Poisson point process in Rd (denoted by Pd) is a basic model of stochastic geometry and modern statistical physics. Using ideas from fractal geometry, geometrical statistics, and random matrix theory, we introduce the model of random points on a self-similar fractal as a model of intermediate statistics, in the sense that the interpoint spacing statistics of the model are intermediate between those of P1 and P2 when the fractal dimension is in between 1 and 2, and intermediate between those of P2 and P3 when the fractal dimension is in between 2 and 3, and so on. We also introduce the idea of using a continuous family of such models to interpolate between P1 and P2 and thereby effectuate crossover transitions between P1 statistics and P2 statistics. We first derive the kth-nearest-neighbor spacing distribution for the general model, and then study the interpoint spacing statistics of several realizations of the model involving Sierpinski fractals in R2 and R3. We also study a realization of a continuous interpolation between P1 and P2, in particular a continuous interpolation between a point process on a line and a point process on a plane-filling curve, using the continuous family of self-similar Koch curves in R2. In the latter study, we specifically analyze the second-nearest-neighbor interpoint spacing statistics, which undergo a crossover transition between semi-Poisson and Ginibre statistics." @default.
- W2056712596 created "2016-06-24" @default.
- W2056712596 creator A5002564896 @default.
- W2056712596 creator A5048543374 @default.
- W2056712596 date "2006-03-01" @default.
- W2056712596 modified "2023-10-02" @default.
- W2056712596 title "Spacing distributions for point processes on a regular fractal" @default.
- W2056712596 cites W1606794504 @default.
- W2056712596 cites W1963596092 @default.
- W2056712596 cites W1965386334 @default.
- W2056712596 cites W1967734602 @default.
- W2056712596 cites W1969336240 @default.
- W2056712596 cites W1969612585 @default.
- W2056712596 cites W1970350602 @default.
- W2056712596 cites W1978864992 @default.
- W2056712596 cites W1984820717 @default.
- W2056712596 cites W1985727038 @default.
- W2056712596 cites W1990242704 @default.
- W2056712596 cites W1992489677 @default.
- W2056712596 cites W1992937031 @default.
- W2056712596 cites W1994350438 @default.
- W2056712596 cites W2001012549 @default.
- W2056712596 cites W2001146550 @default.
- W2056712596 cites W2004857006 @default.
- W2056712596 cites W2010965814 @default.
- W2056712596 cites W2011531583 @default.
- W2056712596 cites W2016757810 @default.
- W2056712596 cites W2022127374 @default.
- W2056712596 cites W2025572374 @default.
- W2056712596 cites W2026075872 @default.
- W2056712596 cites W2030888688 @default.
- W2056712596 cites W2032485564 @default.
- W2056712596 cites W2040832532 @default.
- W2056712596 cites W2051938963 @default.
- W2056712596 cites W2053255464 @default.
- W2056712596 cites W2056117396 @default.
- W2056712596 cites W2059506221 @default.
- W2056712596 cites W2063095975 @default.
- W2056712596 cites W2074592519 @default.
- W2056712596 cites W2074996359 @default.
- W2056712596 cites W2075783229 @default.
- W2056712596 cites W2076723779 @default.
- W2056712596 cites W2078206416 @default.
- W2056712596 cites W2084768820 @default.
- W2056712596 cites W2085077185 @default.
- W2056712596 cites W2090914356 @default.
- W2056712596 cites W2095788831 @default.
- W2056712596 cites W2109439364 @default.
- W2056712596 cites W2114742093 @default.
- W2056712596 cites W2149588760 @default.
- W2056712596 cites W2157852711 @default.
- W2056712596 cites W2159968007 @default.
- W2056712596 cites W2169250720 @default.
- W2056712596 cites W2293007794 @default.
- W2056712596 cites W2797024182 @default.
- W2056712596 cites W4232454247 @default.
- W2056712596 cites W4233497874 @default.
- W2056712596 cites W4234173687 @default.
- W2056712596 cites W4236717005 @default.
- W2056712596 cites W4240032041 @default.
- W2056712596 cites W4240774490 @default.
- W2056712596 cites W4293873733 @default.
- W2056712596 doi "https://doi.org/10.1103/physreve.73.036201" @default.
- W2056712596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16605625" @default.
- W2056712596 hasPublicationYear "2006" @default.
- W2056712596 type Work @default.
- W2056712596 sameAs 2056712596 @default.
- W2056712596 citedByCount "11" @default.
- W2056712596 countsByYear W20567125962012 @default.
- W2056712596 countsByYear W20567125962014 @default.
- W2056712596 countsByYear W20567125962016 @default.
- W2056712596 countsByYear W20567125962017 @default.
- W2056712596 countsByYear W20567125962020 @default.
- W2056712596 crossrefType "journal-article" @default.
- W2056712596 hasAuthorship W2056712596A5002564896 @default.
- W2056712596 hasAuthorship W2056712596A5048543374 @default.
- W2056712596 hasConcept C104114177 @default.
- W2056712596 hasConcept C105795698 @default.
- W2056712596 hasConcept C121332964 @default.
- W2056712596 hasConcept C121864883 @default.
- W2056712596 hasConcept C122507166 @default.
- W2056712596 hasConcept C133905733 @default.
- W2056712596 hasConcept C134306372 @default.
- W2056712596 hasConcept C137800194 @default.
- W2056712596 hasConcept C154945302 @default.
- W2056712596 hasConcept C16757284 @default.
- W2056712596 hasConcept C2524010 @default.
- W2056712596 hasConcept C26546657 @default.
- W2056712596 hasConcept C27176706 @default.
- W2056712596 hasConcept C2781089630 @default.
- W2056712596 hasConcept C33923547 @default.
- W2056712596 hasConcept C40636538 @default.
- W2056712596 hasConcept C41008148 @default.
- W2056712596 hasConcept C74650414 @default.
- W2056712596 hasConcept C88871306 @default.
- W2056712596 hasConceptScore W2056712596C104114177 @default.
- W2056712596 hasConceptScore W2056712596C105795698 @default.
- W2056712596 hasConceptScore W2056712596C121332964 @default.
- W2056712596 hasConceptScore W2056712596C121864883 @default.
- W2056712596 hasConceptScore W2056712596C122507166 @default.