Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056715049> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2056715049 endingPage "331" @default.
- W2056715049 startingPage "321" @default.
- W2056715049 abstract "Connectionist machine learning has proven to be a fruitful approach, and it makes sense to investigate systems that combine the strengths of the symbolic and connectionist approaches to AI. Over the past few years, researchers have successfully developed a number of such systems. This article summarizes one view of this endeavor, a framework that encompasses the approaches of several different research groups. This framework (see Figure 1) views the combination of symbolic and neural learning as a three-stage process: (1) the insertion of symbolic information into a neural network, thereby (partially) determining the topology and initial weight settings of a network, (2) the refinement of this network using a numeric optimization method such as backpropagation, possibly under the guidance of symbolic knowledge, and (3) the extraction of symbolic rules that accurately represent the knowledge contained in a trained network. These three components form an appealing, complete picture—approximately-correct symbolic information in, more-accurate symbolic information out—however, these three stages can be independently studied. In conclusion, the research summarized in this paper demonstrates that combining symbolic and connectionist methods is a promising approach to machine learning." @default.
- W2056715049 created "2016-06-24" @default.
- W2056715049 creator A5058270794 @default.
- W2056715049 date "1994-01-01" @default.
- W2056715049 modified "2023-09-26" @default.
- W2056715049 cites W131552660 @default.
- W2056715049 cites W145476170 @default.
- W2056715049 cites W1527016914 @default.
- W2056715049 cites W1546185221 @default.
- W2056715049 cites W1552785817 @default.
- W2056715049 cites W1559570474 @default.
- W2056715049 cites W1580142630 @default.
- W2056715049 cites W1599216479 @default.
- W2056715049 cites W1614345895 @default.
- W2056715049 cites W179133882 @default.
- W2056715049 cites W18742335 @default.
- W2056715049 cites W1874739755 @default.
- W2056715049 cites W1970906492 @default.
- W2056715049 cites W1971844566 @default.
- W2056715049 cites W1973911979 @default.
- W2056715049 cites W1982370770 @default.
- W2056715049 cites W1989574962 @default.
- W2056715049 cites W1995434016 @default.
- W2056715049 cites W1999138184 @default.
- W2056715049 cites W2015140204 @default.
- W2056715049 cites W2020647649 @default.
- W2056715049 cites W2039651682 @default.
- W2056715049 cites W2043968544 @default.
- W2056715049 cites W2050414686 @default.
- W2056715049 cites W2052729310 @default.
- W2056715049 cites W2076118331 @default.
- W2056715049 cites W2103420263 @default.
- W2056715049 cites W2104873529 @default.
- W2056715049 cites W2110485445 @default.
- W2056715049 cites W2116664051 @default.
- W2056715049 cites W2121553911 @default.
- W2056715049 cites W2135479218 @default.
- W2056715049 cites W2140256637 @default.
- W2056715049 cites W2147684693 @default.
- W2056715049 cites W2147800946 @default.
- W2056715049 cites W2149706766 @default.
- W2056715049 cites W2150884987 @default.
- W2056715049 cites W2156255805 @default.
- W2056715049 cites W2156297475 @default.
- W2056715049 cites W2167567609 @default.
- W2056715049 cites W2168019098 @default.
- W2056715049 cites W2169415433 @default.
- W2056715049 cites W2170702935 @default.
- W2056715049 cites W2189004000 @default.
- W2056715049 cites W2612793397 @default.
- W2056715049 cites W2766736793 @default.
- W2056715049 cites W3022436500 @default.
- W2056715049 cites W3133056632 @default.
- W2056715049 cites W3146590433 @default.
- W2056715049 cites W3207342693 @default.
- W2056715049 cites W39474741 @default.
- W2056715049 cites W53470755 @default.
- W2056715049 cites W602702850 @default.
- W2056715049 cites W88158985 @default.
- W2056715049 cites W2396214571 @default.
- W2056715049 doi "https://doi.org/10.1023/a:1022665814563" @default.
- W2056715049 hasPublicationYear "1994" @default.
- W2056715049 type Work @default.
- W2056715049 sameAs 2056715049 @default.
- W2056715049 citedByCount "40" @default.
- W2056715049 countsByYear W20567150492014 @default.
- W2056715049 countsByYear W20567150492018 @default.
- W2056715049 countsByYear W20567150492020 @default.
- W2056715049 countsByYear W20567150492021 @default.
- W2056715049 crossrefType "journal-article" @default.
- W2056715049 hasAuthorship W2056715049A5058270794 @default.
- W2056715049 hasBestOaLocation W20567150491 @default.
- W2056715049 hasConcept C154945302 @default.
- W2056715049 hasConcept C33923547 @default.
- W2056715049 hasConcept C41008148 @default.
- W2056715049 hasConceptScore W2056715049C154945302 @default.
- W2056715049 hasConceptScore W2056715049C33923547 @default.
- W2056715049 hasConceptScore W2056715049C41008148 @default.
- W2056715049 hasIssue "3" @default.
- W2056715049 hasLocation W20567150491 @default.
- W2056715049 hasOpenAccess W2056715049 @default.
- W2056715049 hasPrimaryLocation W20567150491 @default.
- W2056715049 hasRelatedWork W1974891317 @default.
- W2056715049 hasRelatedWork W2007596026 @default.
- W2056715049 hasRelatedWork W2044189972 @default.
- W2056715049 hasRelatedWork W2069964982 @default.
- W2056715049 hasRelatedWork W2313400459 @default.
- W2056715049 hasRelatedWork W2748952813 @default.
- W2056715049 hasRelatedWork W2899084033 @default.
- W2056715049 hasRelatedWork W3107474891 @default.
- W2056715049 hasRelatedWork W4225152035 @default.
- W2056715049 hasRelatedWork W4245490552 @default.
- W2056715049 hasVolume "14" @default.
- W2056715049 isParatext "false" @default.
- W2056715049 isRetracted "false" @default.
- W2056715049 magId "2056715049" @default.
- W2056715049 workType "article" @default.