Matches in SemOpenAlex for { <https://semopenalex.org/work/W2056996831> ?p ?o ?g. }
- W2056996831 endingPage "88" @default.
- W2056996831 startingPage "37" @default.
- W2056996831 abstract "The hypothesis that planktonic larvae of benthic invertebrates sink through the water like passive particles in turbulent flows near the seabed was tested in the field by exploiting biased sampling characteristics of sediment traps. Traps of several designs were calibrated in a laboratory flume using passively sinking larval mimics having fall velocities similar to those measured on nonswimming polychaete larvae. A priori predictions regarding the rank order in which various trap designs would collect passively sinking larvae in the field were specified by the rank order in which the traps collected larval mimics in the flume. Field experiments were conducted at two sites, 10- and 14-m depth, in Buzzards Bay, Massachusetts, U.S.A., and traps were moored 0.4–1.6 m above the seabed. In experiments during four field seasons, with deployments lasting from several hours to 11 days, trap collections of Mediomastus ambiseta (Hartman) polychaete postlarvae, total bivalve larvae and postlarvae, spionid/sabellariid polychaete larvae (individuals too small to identify definitively to family), spionid polychaete larvae, enteropneust larvae, and gastropod larvae nearly always corresponded to a priori predictions for passive particle collections between sedimenttrap designs. Results were statistically more significant during some collection intervals than during others, but the rank order of larval collections within each group of traps (deployed simultaneously) corresponded to the rank order of passive particle collections by the traps in the flume, with a couple exceptions. Collections of a polychaete, Pectinaria gouldii (Verrill), were more similar between trap designs (i.e., not biased, as predicted for passive particle collections) than the organisms mentioned above. Competent Pectinaria larvae may sink more quickly because of their larger size and reduced surface area (due to construction of a parchment tube while still suspended). There may be no trapping bias for particles sinking this fast. Collections of metamorphosing seastar larvae also were not in the predicted passive rank order, which may be due, in part, to larvae adhering to solid trap surfaces during metamorphosis. The passive sinking hypothesis could not be falsified in most of the field experiments, indicating that hydrodynamical processes may determine distributions of larvae in very near-bottom waters. Passive sinking by larvae is not, however, an explicit result of this study. Other processes that may have produced observed collections, such as chemical, sedimentary or biological differences among trap environments, must be tested against the passive sinking alternative hypothesis. If larvae sink like passive particles to within 0.4-m of the seabed, as results of this study suggest, then it is possible that larvae initially reach the seafloor at sites where particulates, with fall velocities similar to larvae, initially settle. Passive deposition may thus determine the relatively large-scale distribution of larvae, with active or passive redistribution of larvae, post-settlement selection, or post-settlement mortality determining localized distributions." @default.
- W2056996831 created "2016-06-24" @default.
- W2056996831 creator A5008315698 @default.
- W2056996831 date "1989-01-01" @default.
- W2056996831 modified "2023-09-23" @default.
- W2056996831 title "Sediment-trap experiments on the importance of hydrodynamical processes in distributing settling invertebrate larvae in near-bottom waters" @default.
- W2056996831 cites W1189308943 @default.
- W2056996831 cites W1849859991 @default.
- W2056996831 cites W1965783110 @default.
- W2056996831 cites W1967636080 @default.
- W2056996831 cites W1973670157 @default.
- W2056996831 cites W1975011898 @default.
- W2056996831 cites W1977214494 @default.
- W2056996831 cites W1977707434 @default.
- W2056996831 cites W1978882204 @default.
- W2056996831 cites W1981768157 @default.
- W2056996831 cites W1986266163 @default.
- W2056996831 cites W1986270721 @default.
- W2056996831 cites W1994527528 @default.
- W2056996831 cites W1998474688 @default.
- W2056996831 cites W1998602411 @default.
- W2056996831 cites W2002871978 @default.
- W2056996831 cites W2006021629 @default.
- W2056996831 cites W2008251393 @default.
- W2056996831 cites W2012256799 @default.
- W2056996831 cites W2015307801 @default.
- W2056996831 cites W2022187287 @default.
- W2056996831 cites W2025507953 @default.
- W2056996831 cites W2027646815 @default.
- W2056996831 cites W2030811778 @default.
- W2056996831 cites W2037713607 @default.
- W2056996831 cites W2043429193 @default.
- W2056996831 cites W2049153274 @default.
- W2056996831 cites W2058008179 @default.
- W2056996831 cites W2062296788 @default.
- W2056996831 cites W2064623413 @default.
- W2056996831 cites W2067484713 @default.
- W2056996831 cites W2071785770 @default.
- W2056996831 cites W2084154846 @default.
- W2056996831 cites W2088584643 @default.
- W2056996831 cites W2088623871 @default.
- W2056996831 cites W2091850748 @default.
- W2056996831 cites W2108973180 @default.
- W2056996831 cites W2111088546 @default.
- W2056996831 cites W2122145543 @default.
- W2056996831 cites W2140067888 @default.
- W2056996831 cites W2153406770 @default.
- W2056996831 cites W2155830471 @default.
- W2056996831 cites W2167786404 @default.
- W2056996831 cites W2170114634 @default.
- W2056996831 cites W2231391768 @default.
- W2056996831 cites W2327795405 @default.
- W2056996831 cites W2335209136 @default.
- W2056996831 cites W2413311172 @default.
- W2056996831 cites W2511090936 @default.
- W2056996831 doi "https://doi.org/10.1016/0022-0981(90)90055-h" @default.
- W2056996831 hasPublicationYear "1989" @default.
- W2056996831 type Work @default.
- W2056996831 sameAs 2056996831 @default.
- W2056996831 citedByCount "68" @default.
- W2056996831 countsByYear W20569968312012 @default.
- W2056996831 countsByYear W20569968312013 @default.
- W2056996831 countsByYear W20569968312015 @default.
- W2056996831 countsByYear W20569968312017 @default.
- W2056996831 countsByYear W20569968312018 @default.
- W2056996831 countsByYear W20569968312020 @default.
- W2056996831 countsByYear W20569968312022 @default.
- W2056996831 crossrefType "journal-article" @default.
- W2056996831 hasAuthorship W2056996831A5008315698 @default.
- W2056996831 hasConcept C111368507 @default.
- W2056996831 hasConcept C121332964 @default.
- W2056996831 hasConcept C122846477 @default.
- W2056996831 hasConcept C127313418 @default.
- W2056996831 hasConcept C13474642 @default.
- W2056996831 hasConcept C151730666 @default.
- W2056996831 hasConcept C153018869 @default.
- W2056996831 hasConcept C172269249 @default.
- W2056996831 hasConcept C173758957 @default.
- W2056996831 hasConcept C18903297 @default.
- W2056996831 hasConcept C2777871205 @default.
- W2056996831 hasConcept C2778320725 @default.
- W2056996831 hasConcept C2778492020 @default.
- W2056996831 hasConcept C2781123465 @default.
- W2056996831 hasConcept C2816523 @default.
- W2056996831 hasConcept C32350722 @default.
- W2056996831 hasConcept C33613203 @default.
- W2056996831 hasConcept C505870484 @default.
- W2056996831 hasConcept C57879066 @default.
- W2056996831 hasConcept C75031826 @default.
- W2056996831 hasConcept C83042747 @default.
- W2056996831 hasConcept C86803240 @default.
- W2056996831 hasConceptScore W2056996831C111368507 @default.
- W2056996831 hasConceptScore W2056996831C121332964 @default.
- W2056996831 hasConceptScore W2056996831C122846477 @default.
- W2056996831 hasConceptScore W2056996831C127313418 @default.
- W2056996831 hasConceptScore W2056996831C13474642 @default.
- W2056996831 hasConceptScore W2056996831C151730666 @default.
- W2056996831 hasConceptScore W2056996831C153018869 @default.