Matches in SemOpenAlex for { <https://semopenalex.org/work/W2057160778> ?p ?o ?g. }
- W2057160778 endingPage "1761" @default.
- W2057160778 startingPage "1753" @default.
- W2057160778 abstract "Due to various seasonal and monthly changes in electricity consumption, it is difficult to model it with conventional methods. This paper illustrates an Artificial Neural Network (ANN) approach based on supervised multi layer perceptron (MLP) network for the electrical consumption forecasting. In order to train the ANN, preprocessed data have been extracted from the time series techniques. This is the first study which uses ANN and time series for forecasting electrical consumption. Previous studies based their verification by the difference error estimation. However, this study shows the advantage of ANN methodology through analysis of variance (ANOVA). Furthermore, actual data are compared with ANN and conventional regression model. To show the applicability and superiority of the ANN and time series approach, monthly electricity consumption in Iran for the past 20 years was collected to train and test the network." @default.
- W2057160778 created "2016-06-24" @default.
- W2057160778 creator A5017029449 @default.
- W2057160778 creator A5019769937 @default.
- W2057160778 creator A5065121508 @default.
- W2057160778 date "2007-03-01" @default.
- W2057160778 modified "2023-09-26" @default.
- W2057160778 title "Forecasting electrical consumption by integration of Neural Network, time series and ANOVA" @default.
- W2057160778 cites W1998107417 @default.
- W2057160778 cites W2002728105 @default.
- W2057160778 cites W2008404566 @default.
- W2057160778 cites W2021538898 @default.
- W2057160778 cites W2059447477 @default.
- W2057160778 cites W2083836843 @default.
- W2057160778 cites W2101393539 @default.
- W2057160778 cites W2108409844 @default.
- W2057160778 cites W2110693287 @default.
- W2057160778 cites W2116048577 @default.
- W2057160778 cites W2125392132 @default.
- W2057160778 cites W2128241054 @default.
- W2057160778 cites W2150722745 @default.
- W2057160778 cites W2158442843 @default.
- W2057160778 cites W2164083776 @default.
- W2057160778 doi "https://doi.org/10.1016/j.amc.2006.08.094" @default.
- W2057160778 hasPublicationYear "2007" @default.
- W2057160778 type Work @default.
- W2057160778 sameAs 2057160778 @default.
- W2057160778 citedByCount "142" @default.
- W2057160778 countsByYear W20571607782012 @default.
- W2057160778 countsByYear W20571607782013 @default.
- W2057160778 countsByYear W20571607782014 @default.
- W2057160778 countsByYear W20571607782015 @default.
- W2057160778 countsByYear W20571607782016 @default.
- W2057160778 countsByYear W20571607782017 @default.
- W2057160778 countsByYear W20571607782018 @default.
- W2057160778 countsByYear W20571607782019 @default.
- W2057160778 countsByYear W20571607782020 @default.
- W2057160778 countsByYear W20571607782021 @default.
- W2057160778 countsByYear W20571607782022 @default.
- W2057160778 countsByYear W20571607782023 @default.
- W2057160778 crossrefType "journal-article" @default.
- W2057160778 hasAuthorship W2057160778A5017029449 @default.
- W2057160778 hasAuthorship W2057160778A5019769937 @default.
- W2057160778 hasAuthorship W2057160778A5065121508 @default.
- W2057160778 hasConcept C105795698 @default.
- W2057160778 hasConcept C119599485 @default.
- W2057160778 hasConcept C119857082 @default.
- W2057160778 hasConcept C121955636 @default.
- W2057160778 hasConcept C124101348 @default.
- W2057160778 hasConcept C127413603 @default.
- W2057160778 hasConcept C143724316 @default.
- W2057160778 hasConcept C144024400 @default.
- W2057160778 hasConcept C144133560 @default.
- W2057160778 hasConcept C151406439 @default.
- W2057160778 hasConcept C151730666 @default.
- W2057160778 hasConcept C152877465 @default.
- W2057160778 hasConcept C154945302 @default.
- W2057160778 hasConcept C179717631 @default.
- W2057160778 hasConcept C196083921 @default.
- W2057160778 hasConcept C206658404 @default.
- W2057160778 hasConcept C30772137 @default.
- W2057160778 hasConcept C33923547 @default.
- W2057160778 hasConcept C36289849 @default.
- W2057160778 hasConcept C41008148 @default.
- W2057160778 hasConcept C48921125 @default.
- W2057160778 hasConcept C50644808 @default.
- W2057160778 hasConcept C60908668 @default.
- W2057160778 hasConcept C86803240 @default.
- W2057160778 hasConceptScore W2057160778C105795698 @default.
- W2057160778 hasConceptScore W2057160778C119599485 @default.
- W2057160778 hasConceptScore W2057160778C119857082 @default.
- W2057160778 hasConceptScore W2057160778C121955636 @default.
- W2057160778 hasConceptScore W2057160778C124101348 @default.
- W2057160778 hasConceptScore W2057160778C127413603 @default.
- W2057160778 hasConceptScore W2057160778C143724316 @default.
- W2057160778 hasConceptScore W2057160778C144024400 @default.
- W2057160778 hasConceptScore W2057160778C144133560 @default.
- W2057160778 hasConceptScore W2057160778C151406439 @default.
- W2057160778 hasConceptScore W2057160778C151730666 @default.
- W2057160778 hasConceptScore W2057160778C152877465 @default.
- W2057160778 hasConceptScore W2057160778C154945302 @default.
- W2057160778 hasConceptScore W2057160778C179717631 @default.
- W2057160778 hasConceptScore W2057160778C196083921 @default.
- W2057160778 hasConceptScore W2057160778C206658404 @default.
- W2057160778 hasConceptScore W2057160778C30772137 @default.
- W2057160778 hasConceptScore W2057160778C33923547 @default.
- W2057160778 hasConceptScore W2057160778C36289849 @default.
- W2057160778 hasConceptScore W2057160778C41008148 @default.
- W2057160778 hasConceptScore W2057160778C48921125 @default.
- W2057160778 hasConceptScore W2057160778C50644808 @default.
- W2057160778 hasConceptScore W2057160778C60908668 @default.
- W2057160778 hasConceptScore W2057160778C86803240 @default.
- W2057160778 hasIssue "2" @default.
- W2057160778 hasLocation W20571607781 @default.
- W2057160778 hasOpenAccess W2057160778 @default.
- W2057160778 hasPrimaryLocation W20571607781 @default.
- W2057160778 hasRelatedWork W2002673437 @default.
- W2057160778 hasRelatedWork W2295393149 @default.