Matches in SemOpenAlex for { <https://semopenalex.org/work/W2057267564> ?p ?o ?g. }
- W2057267564 endingPage "2165" @default.
- W2057267564 startingPage "2153" @default.
- W2057267564 abstract "Abstract. An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM). There is also a growing desire to directly use source impact estimates in health studies; however, source impacts cannot be directly measured. Several limitations are inherent in most source apportionment methods motivating the development of a novel hybrid approach that is used to estimate source impacts by combining the capabilities of receptor models (RMs) and chemical transport models (CTMs). The hybrid CTM–RM method calculates adjustment factors to refine the CTM-estimated impact of sources at monitoring sites using pollutant species observations and the results of CTM sensitivity analyses, though it does not directly generate spatial source impact fields. The CTM used here is the Community Multiscale Air Quality (CMAQ) model, and the RM approach is based on the chemical mass balance (CMB) model. This work presents a method that utilizes kriging to spatially interpolate source-specific impact adjustment factors to generate revised CTM source impact fields from the CTM–RM method results, and is applied for January 2004 over the continental United States. The kriging step is evaluated using data withholding and by comparing results to data from alternative networks. Data withholding also provides an estimate of method uncertainty. Directly applied (hybrid, HYB) and spatially interpolated (spatial hybrid, SH) hybrid adjustment factors at withheld observation sites had a correlation coefficient of 0.89, a linear regression slope of 0.83 ± 0.02, and an intercept of 0.14 ± 0.02. Refined source contributions reflect current knowledge of PM emissions (e.g., significant differences in biomass burning impact fields). Concentrations of 19 species and total PM2.5 mass were reconstructed for withheld observation sites using HYB and SH adjustment factors. The mean concentrations of total PM2.5 at withheld observation sites were 11.7 (± 8.3), 16.3 (± 11), 8.59 (± 4.7), and 9.2 (± 5.7) μg m−3 for the observations, CTM, HYB, and SH predictions, respectively. Correlations improved for concentrations of major ions, including nitrate (CMAQ–DDM (decoupled direct method): 0.404, SH: 0.449), ammonium (CMAQ–DDM: 0.454, SH: 0.492), and sulfate (CMAQ–DDM: 0.706, SH: 0.730). Errors in simulated concentrations of metals were reduced considerably: 295 % (CMAQ–DDM) to 139 % (SH) for vanadium; and 1340 % (CMAQ–DDM) to 326 % (SH) for manganese. Errors in simulated concentrations of some metals are expected to remain given the uncertainties in source profiles. Species concentrations were reconstructed using SH results, and the error relative to observed concentrations was greatly reduced as compared to CTM-simulated concentrations. Results demonstrate that the hybrid method along with a spatial extension can be used for large-scale, spatially resolved source apportionment studies where observational data are spatially and temporally limited." @default.
- W2057267564 created "2016-06-24" @default.
- W2057267564 creator A5014137078 @default.
- W2057267564 creator A5020538206 @default.
- W2057267564 creator A5021492042 @default.
- W2057267564 creator A5067004889 @default.
- W2057267564 creator A5084254575 @default.
- W2057267564 date "2015-07-20" @default.
- W2057267564 modified "2023-09-27" @default.
- W2057267564 title "Development of PM<sub>2.5</sub> source impact spatial fields using a hybrid source apportionment air quality model" @default.
- W2057267564 cites W1967433218 @default.
- W2057267564 cites W1967922485 @default.
- W2057267564 cites W1979494129 @default.
- W2057267564 cites W1980112911 @default.
- W2057267564 cites W1981832254 @default.
- W2057267564 cites W1983103457 @default.
- W2057267564 cites W1985669212 @default.
- W2057267564 cites W1987053658 @default.
- W2057267564 cites W1999197379 @default.
- W2057267564 cites W2000790306 @default.
- W2057267564 cites W2002106625 @default.
- W2057267564 cites W2005698219 @default.
- W2057267564 cites W2008641894 @default.
- W2057267564 cites W2017909753 @default.
- W2057267564 cites W2018929849 @default.
- W2057267564 cites W2020088812 @default.
- W2057267564 cites W2022377930 @default.
- W2057267564 cites W2025839092 @default.
- W2057267564 cites W2026718343 @default.
- W2057267564 cites W2040066643 @default.
- W2057267564 cites W2040718868 @default.
- W2057267564 cites W2044875653 @default.
- W2057267564 cites W2048160823 @default.
- W2057267564 cites W2049937033 @default.
- W2057267564 cites W2055366048 @default.
- W2057267564 cites W2059745395 @default.
- W2057267564 cites W2069019779 @default.
- W2057267564 cites W2074601501 @default.
- W2057267564 cites W2076565674 @default.
- W2057267564 cites W2077820980 @default.
- W2057267564 cites W2077946087 @default.
- W2057267564 cites W2078960528 @default.
- W2057267564 cites W2082298203 @default.
- W2057267564 cites W2091227784 @default.
- W2057267564 cites W2151133928 @default.
- W2057267564 cites W2155118487 @default.
- W2057267564 cites W2157799151 @default.
- W2057267564 cites W2162047162 @default.
- W2057267564 cites W2165680013 @default.
- W2057267564 cites W2166604768 @default.
- W2057267564 cites W2167289707 @default.
- W2057267564 cites W2321628267 @default.
- W2057267564 cites W2416262024 @default.
- W2057267564 cites W4362207754 @default.
- W2057267564 doi "https://doi.org/10.5194/gmd-8-2153-2015" @default.
- W2057267564 hasPublicationYear "2015" @default.
- W2057267564 type Work @default.
- W2057267564 sameAs 2057267564 @default.
- W2057267564 citedByCount "37" @default.
- W2057267564 countsByYear W20572675642016 @default.
- W2057267564 countsByYear W20572675642017 @default.
- W2057267564 countsByYear W20572675642018 @default.
- W2057267564 countsByYear W20572675642019 @default.
- W2057267564 countsByYear W20572675642020 @default.
- W2057267564 countsByYear W20572675642021 @default.
- W2057267564 countsByYear W20572675642022 @default.
- W2057267564 countsByYear W20572675642023 @default.
- W2057267564 crossrefType "journal-article" @default.
- W2057267564 hasAuthorship W2057267564A5014137078 @default.
- W2057267564 hasAuthorship W2057267564A5020538206 @default.
- W2057267564 hasAuthorship W2057267564A5021492042 @default.
- W2057267564 hasAuthorship W2057267564A5067004889 @default.
- W2057267564 hasAuthorship W2057267564A5084254575 @default.
- W2057267564 hasBestOaLocation W20572675641 @default.
- W2057267564 hasConcept C105795698 @default.
- W2057267564 hasConcept C121332964 @default.
- W2057267564 hasConcept C126314574 @default.
- W2057267564 hasConcept C150060386 @default.
- W2057267564 hasConcept C153294291 @default.
- W2057267564 hasConcept C17744445 @default.
- W2057267564 hasConcept C178790620 @default.
- W2057267564 hasConcept C185592680 @default.
- W2057267564 hasConcept C199539241 @default.
- W2057267564 hasConcept C24245907 @default.
- W2057267564 hasConcept C2776845762 @default.
- W2057267564 hasConcept C2778337684 @default.
- W2057267564 hasConcept C33923547 @default.
- W2057267564 hasConcept C39432304 @default.
- W2057267564 hasConcept C81692654 @default.
- W2057267564 hasConcept C82685317 @default.
- W2057267564 hasConcept C91586092 @default.
- W2057267564 hasConceptScore W2057267564C105795698 @default.
- W2057267564 hasConceptScore W2057267564C121332964 @default.
- W2057267564 hasConceptScore W2057267564C126314574 @default.
- W2057267564 hasConceptScore W2057267564C150060386 @default.
- W2057267564 hasConceptScore W2057267564C153294291 @default.
- W2057267564 hasConceptScore W2057267564C17744445 @default.
- W2057267564 hasConceptScore W2057267564C178790620 @default.