Matches in SemOpenAlex for { <https://semopenalex.org/work/W2057304861> ?p ?o ?g. }
- W2057304861 endingPage "3166" @default.
- W2057304861 startingPage "3155" @default.
- W2057304861 abstract "Efficiency frontier analysis has been an important approach of evaluating firms’ performance in private and public sectors. There have been many efficiency frontier analysis methods reported in the literature. However, the assumptions made for each of these methods are restrictive. Each of these methodologies has its strength as well as major limitations. This study proposes a non-parametric efficiency frontier analysis method based on the adaptive neural network technique for measuring efficiency as a complementary tool for the common techniques of the efficiency studies in the previous studies. The proposed computational method is able to find a stochastic frontier based on a set of input–output observational data and do not require explicit assumptions about the function structure of the stochastic frontier. In this algorithm, for calculating the efficiency scores, a similar approach to econometric methods has been used. Moreover, the effect of the return to scale of decision-making units (DMUs) on its efficiency is included and the unit used for the correction is selected by notice of its scale (under constant return to scale assumption). An example using real data is presented for illustrative purposes. In the application to the power generation sector of Iran, we find that the neural network provide more robust results and identifies more efficient units than the conventional methods since better performance patterns are explored. Moreover, principle component analysis (PCA) is used to verify the findings of the proposed algorithm." @default.
- W2057304861 created "2016-06-24" @default.
- W2057304861 creator A5017029449 @default.
- W2057304861 creator A5024383984 @default.
- W2057304861 creator A5044830294 @default.
- W2057304861 creator A5065121508 @default.
- W2057304861 date "2007-06-01" @default.
- W2057304861 modified "2023-09-26" @default.
- W2057304861 title "Performance assessment of electric power generations using an adaptive neural network algorithm" @default.
- W2057304861 cites W1969681270 @default.
- W2057304861 cites W1970714669 @default.
- W2057304861 cites W1976358775 @default.
- W2057304861 cites W1978291559 @default.
- W2057304861 cites W1982348007 @default.
- W2057304861 cites W1982857411 @default.
- W2057304861 cites W1983392084 @default.
- W2057304861 cites W1991320645 @default.
- W2057304861 cites W2002466928 @default.
- W2057304861 cites W2017874498 @default.
- W2057304861 cites W2036571338 @default.
- W2057304861 cites W2038796879 @default.
- W2057304861 cites W2044341274 @default.
- W2057304861 cites W2048317121 @default.
- W2057304861 cites W2050099778 @default.
- W2057304861 cites W2053865013 @default.
- W2057304861 cites W2057160778 @default.
- W2057304861 cites W2062873255 @default.
- W2057304861 cites W2066044086 @default.
- W2057304861 cites W2073381031 @default.
- W2057304861 cites W2076452041 @default.
- W2057304861 cites W2076750860 @default.
- W2057304861 cites W2085751038 @default.
- W2057304861 cites W2088503829 @default.
- W2057304861 cites W2092667551 @default.
- W2057304861 cites W2097529207 @default.
- W2057304861 cites W2102423276 @default.
- W2057304861 cites W2103496339 @default.
- W2057304861 cites W2127513378 @default.
- W2057304861 cites W2136217720 @default.
- W2057304861 cites W2137983211 @default.
- W2057304861 cites W2146552111 @default.
- W2057304861 cites W2162240164 @default.
- W2057304861 cites W2165671206 @default.
- W2057304861 cites W2539468908 @default.
- W2057304861 cites W2540007442 @default.
- W2057304861 cites W4252784759 @default.
- W2057304861 cites W46278751 @default.
- W2057304861 doi "https://doi.org/10.1016/j.enpol.2006.11.012" @default.
- W2057304861 hasPublicationYear "2007" @default.
- W2057304861 type Work @default.
- W2057304861 sameAs 2057304861 @default.
- W2057304861 citedByCount "71" @default.
- W2057304861 countsByYear W20573048612012 @default.
- W2057304861 countsByYear W20573048612013 @default.
- W2057304861 countsByYear W20573048612014 @default.
- W2057304861 countsByYear W20573048612015 @default.
- W2057304861 countsByYear W20573048612016 @default.
- W2057304861 countsByYear W20573048612017 @default.
- W2057304861 countsByYear W20573048612018 @default.
- W2057304861 countsByYear W20573048612019 @default.
- W2057304861 countsByYear W20573048612020 @default.
- W2057304861 countsByYear W20573048612022 @default.
- W2057304861 countsByYear W20573048612023 @default.
- W2057304861 crossrefType "journal-article" @default.
- W2057304861 hasAuthorship W2057304861A5017029449 @default.
- W2057304861 hasAuthorship W2057304861A5024383984 @default.
- W2057304861 hasAuthorship W2057304861A5044830294 @default.
- W2057304861 hasAuthorship W2057304861A5065121508 @default.
- W2057304861 hasConcept C10138342 @default.
- W2057304861 hasConcept C105795698 @default.
- W2057304861 hasConcept C11413529 @default.
- W2057304861 hasConcept C117251300 @default.
- W2057304861 hasConcept C119857082 @default.
- W2057304861 hasConcept C126255220 @default.
- W2057304861 hasConcept C139719470 @default.
- W2057304861 hasConcept C149782125 @default.
- W2057304861 hasConcept C162324750 @default.
- W2057304861 hasConcept C165083353 @default.
- W2057304861 hasConcept C22088475 @default.
- W2057304861 hasConcept C2778348673 @default.
- W2057304861 hasConcept C2780821815 @default.
- W2057304861 hasConcept C33923547 @default.
- W2057304861 hasConcept C41008148 @default.
- W2057304861 hasConcept C50644808 @default.
- W2057304861 hasConcept C51485801 @default.
- W2057304861 hasConceptScore W2057304861C10138342 @default.
- W2057304861 hasConceptScore W2057304861C105795698 @default.
- W2057304861 hasConceptScore W2057304861C11413529 @default.
- W2057304861 hasConceptScore W2057304861C117251300 @default.
- W2057304861 hasConceptScore W2057304861C119857082 @default.
- W2057304861 hasConceptScore W2057304861C126255220 @default.
- W2057304861 hasConceptScore W2057304861C139719470 @default.
- W2057304861 hasConceptScore W2057304861C149782125 @default.
- W2057304861 hasConceptScore W2057304861C162324750 @default.
- W2057304861 hasConceptScore W2057304861C165083353 @default.
- W2057304861 hasConceptScore W2057304861C22088475 @default.
- W2057304861 hasConceptScore W2057304861C2778348673 @default.
- W2057304861 hasConceptScore W2057304861C2780821815 @default.