Matches in SemOpenAlex for { <https://semopenalex.org/work/W2057329494> ?p ?o ?g. }
- W2057329494 abstract "With the help of epigenome-wide association studies (EWAS), increasing knowledge on the role of epigenetic mechanisms such as DNA methylation in disease processes is obtained. In addition, EWAS aid the understanding of behavioral and environmental effects on DNA methylation. In terms of statistical analysis, specific challenges arise from the characteristics of methylation data. First, methylation β-values represent proportions with skewed and heteroscedastic distributions. Thus, traditional modeling strategies assuming a normally distributed response might not be appropriate. Second, recent evidence suggests that not only mean differences but also variability in site-specific DNA methylation associates with diseases, including cancer. The purpose of this study was to compare different modeling strategies for methylation data in terms of model performance and performance of downstream hypothesis tests. Specifically, we used the generalized additive models for location, scale and shape (GAMLSS) framework to compare beta regression with Gaussian regression on raw, binary logit and arcsine square root transformed methylation data, with and without modeling a covariate effect on the scale parameter. Using simulated and real data from a large population-based study and an independent sample of cancer patients and healthy controls, we show that beta regression does not outperform competing strategies in terms of model performance. In addition, Gaussian models for location and scale showed an improved performance as compared to models for location only. The best performance was observed for the Gaussian model on binary logit transformed β-values, referred to as M-values. Our results further suggest that models for location and scale are specifically sensitive towards violations of the distribution assumption and towards outliers in the methylation data. Therefore, a resampling procedure is proposed as a mode of inference and shown to diminish type I error rate in practically relevant settings. We apply the proposed method in an EWAS of BMI and age and reveal strong associations of age with methylation variability that are validated in an independent sample. Models for location and scale are promising tools for EWAS that may help to understand the influence of environmental factors and disease-related phenotypes on methylation variability and its role during disease development." @default.
- W2057329494 created "2016-06-24" @default.
- W2057329494 creator A5020349888 @default.
- W2057329494 creator A5031620559 @default.
- W2057329494 creator A5034424670 @default.
- W2057329494 creator A5054929474 @default.
- W2057329494 creator A5073127611 @default.
- W2057329494 creator A5084921557 @default.
- W2057329494 creator A5084999936 @default.
- W2057329494 creator A5085407328 @default.
- W2057329494 date "2014-07-03" @default.
- W2057329494 modified "2023-10-10" @default.
- W2057329494 title "On the potential of models for location and scale for genome-wide DNA methylation data" @default.
- W2057329494 cites W1964551960 @default.
- W2057329494 cites W1971278120 @default.
- W2057329494 cites W1982413607 @default.
- W2057329494 cites W1985444222 @default.
- W2057329494 cites W1989663044 @default.
- W2057329494 cites W1998643818 @default.
- W2057329494 cites W1999087252 @default.
- W2057329494 cites W2006345816 @default.
- W2057329494 cites W2017502278 @default.
- W2057329494 cites W2029033394 @default.
- W2057329494 cites W2040490772 @default.
- W2057329494 cites W2046671000 @default.
- W2057329494 cites W2048067365 @default.
- W2057329494 cites W2051884913 @default.
- W2057329494 cites W2054601158 @default.
- W2057329494 cites W2056040742 @default.
- W2057329494 cites W2060444097 @default.
- W2057329494 cites W2080591050 @default.
- W2057329494 cites W2096715243 @default.
- W2057329494 cites W2098827594 @default.
- W2057329494 cites W2098910318 @default.
- W2057329494 cites W2099562966 @default.
- W2057329494 cites W2104651942 @default.
- W2057329494 cites W2105008689 @default.
- W2057329494 cites W2108694197 @default.
- W2057329494 cites W2113312317 @default.
- W2057329494 cites W2113827149 @default.
- W2057329494 cites W2120731353 @default.
- W2057329494 cites W2125154191 @default.
- W2057329494 cites W2125700595 @default.
- W2057329494 cites W2130523009 @default.
- W2057329494 cites W2132289378 @default.
- W2057329494 cites W2135998607 @default.
- W2057329494 cites W2136629470 @default.
- W2057329494 cites W2136691282 @default.
- W2057329494 cites W2137147070 @default.
- W2057329494 cites W2152434143 @default.
- W2057329494 cites W2156124720 @default.
- W2057329494 cites W2166711199 @default.
- W2057329494 cites W2167287693 @default.
- W2057329494 cites W2168728176 @default.
- W2057329494 cites W2169556367 @default.
- W2057329494 cites W4241996101 @default.
- W2057329494 cites W4298870098 @default.
- W2057329494 cites W4298872162 @default.
- W2057329494 doi "https://doi.org/10.1186/1471-2105-15-232" @default.
- W2057329494 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4227139" @default.
- W2057329494 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24994026" @default.
- W2057329494 hasPublicationYear "2014" @default.
- W2057329494 type Work @default.
- W2057329494 sameAs 2057329494 @default.
- W2057329494 citedByCount "15" @default.
- W2057329494 countsByYear W20573294942015 @default.
- W2057329494 countsByYear W20573294942016 @default.
- W2057329494 countsByYear W20573294942017 @default.
- W2057329494 countsByYear W20573294942018 @default.
- W2057329494 countsByYear W20573294942019 @default.
- W2057329494 countsByYear W20573294942021 @default.
- W2057329494 countsByYear W20573294942022 @default.
- W2057329494 crossrefType "journal-article" @default.
- W2057329494 hasAuthorship W2057329494A5020349888 @default.
- W2057329494 hasAuthorship W2057329494A5031620559 @default.
- W2057329494 hasAuthorship W2057329494A5034424670 @default.
- W2057329494 hasAuthorship W2057329494A5054929474 @default.
- W2057329494 hasAuthorship W2057329494A5073127611 @default.
- W2057329494 hasAuthorship W2057329494A5084921557 @default.
- W2057329494 hasAuthorship W2057329494A5084999936 @default.
- W2057329494 hasAuthorship W2057329494A5085407328 @default.
- W2057329494 hasBestOaLocation W20573294941 @default.
- W2057329494 hasConcept C104317684 @default.
- W2057329494 hasConcept C105795698 @default.
- W2057329494 hasConcept C119043178 @default.
- W2057329494 hasConcept C150194340 @default.
- W2057329494 hasConcept C152877465 @default.
- W2057329494 hasConcept C190727270 @default.
- W2057329494 hasConcept C2908647359 @default.
- W2057329494 hasConcept C33288867 @default.
- W2057329494 hasConcept C33923547 @default.
- W2057329494 hasConcept C41008148 @default.
- W2057329494 hasConcept C41091548 @default.
- W2057329494 hasConcept C54355233 @default.
- W2057329494 hasConcept C552990157 @default.
- W2057329494 hasConcept C70721500 @default.
- W2057329494 hasConcept C71924100 @default.
- W2057329494 hasConcept C83546350 @default.
- W2057329494 hasConcept C86803240 @default.
- W2057329494 hasConcept C99454951 @default.