Matches in SemOpenAlex for { <https://semopenalex.org/work/W2057332317> ?p ?o ?g. }
- W2057332317 endingPage "349" @default.
- W2057332317 startingPage "336" @default.
- W2057332317 abstract "Abstract Phytoplankton abundance, as chl a , in Saginaw Bay, Lake Huron was modeled using artificial neural networks. Suites of abiotic variables served as predictors for the trends/patterns in chl a concentrations. Spatial and temporal gradients of sampling stations throughout the bay were evident, with physical/chemical differences arising from hydrological/meteorological forcing and zebra mussel recruitment. Chlorophyll a concentrations displayed corresponding disparities; concentrations differed between the inner and outer bays and varied intra‐ and inter‐annually. Trained networks reproduced the intrinsic variance and magnitude of chl a dynamics. Modeled‐measured concentrations best approximated a 1:1 relationship in a hybrid network incorporating both supervised and unsupervised training whereas concentrations greater than 15 μg/L were underestimated in networks utilizing only supervised training, likely because of inadequate training data. Variables indicative of phytoplankton nutrition, acting as proxy measurements of algal biomass, and/or corresponding to descriptors of hydrological and meteorological forcing had the greatest influence upon modeled concentrations. A conjunctive decision tree and a novel sensitivity analysis provided rule‐based information and comprehensible interpretation of relationships among multiple predictor variables. From this, the “knowledge” embedded in trained networks proved extractable and usable for ecological theory generation and/or decision making within water‐quality problem solving. Forecasting initiatives within the developing Great Lakes Observing System may be best served by embedding neural networks in mechanistic models to quantitatively initialize variables, qualitatively delineate conditions for projecting ecological structure, and/or estimate deviations from predictability within mechanistic simulations." @default.
- W2057332317 created "2016-06-24" @default.
- W2057332317 creator A5012085314 @default.
- W2057332317 creator A5017769921 @default.
- W2057332317 creator A5027484060 @default.
- W2057332317 creator A5048168036 @default.
- W2057332317 creator A5057411147 @default.
- W2057332317 creator A5070711605 @default.
- W2057332317 creator A5074290894 @default.
- W2057332317 creator A5076465961 @default.
- W2057332317 date "2006-04-01" @default.
- W2057332317 modified "2023-10-13" @default.
- W2057332317 title "MODELING PHYTOPLANKTON ABUNDANCE IN SAGINAW BAY, LAKE HURON: USING ARTIFICIAL NEURAL NETWORKS TO DISCERN FUNCTIONAL INFLUENCE OF ENVIRONMENTAL VARIABLES AND RELEVANCE TO A GREAT LAKES OBSERVING SYSTEM1" @default.
- W2057332317 cites W1612631360 @default.
- W2057332317 cites W1964431426 @default.
- W2057332317 cites W1974313232 @default.
- W2057332317 cites W1987054335 @default.
- W2057332317 cites W1987428902 @default.
- W2057332317 cites W1990814790 @default.
- W2057332317 cites W2001487132 @default.
- W2057332317 cites W2004079625 @default.
- W2057332317 cites W2005991447 @default.
- W2057332317 cites W2009551326 @default.
- W2057332317 cites W2014827117 @default.
- W2057332317 cites W2016830458 @default.
- W2057332317 cites W2019878872 @default.
- W2057332317 cites W2027006861 @default.
- W2057332317 cites W2031041743 @default.
- W2057332317 cites W2034186219 @default.
- W2057332317 cites W2034306387 @default.
- W2057332317 cites W2040329764 @default.
- W2057332317 cites W2042306810 @default.
- W2057332317 cites W2044161450 @default.
- W2057332317 cites W2048996076 @default.
- W2057332317 cites W2052465003 @default.
- W2057332317 cites W2062110496 @default.
- W2057332317 cites W2062154476 @default.
- W2057332317 cites W2077088153 @default.
- W2057332317 cites W2078885701 @default.
- W2057332317 cites W2089120078 @default.
- W2057332317 cites W2098194254 @default.
- W2057332317 cites W2102889091 @default.
- W2057332317 cites W2110798438 @default.
- W2057332317 cites W2134490629 @default.
- W2057332317 cites W2138467337 @default.
- W2057332317 cites W2140923929 @default.
- W2057332317 cites W2142845953 @default.
- W2057332317 cites W2156557281 @default.
- W2057332317 cites W2168087399 @default.
- W2057332317 cites W2181204275 @default.
- W2057332317 cites W2506936235 @default.
- W2057332317 cites W4239867831 @default.
- W2057332317 doi "https://doi.org/10.1111/j.1529-8817.2006.00209.x" @default.
- W2057332317 hasPublicationYear "2006" @default.
- W2057332317 type Work @default.
- W2057332317 sameAs 2057332317 @default.
- W2057332317 citedByCount "23" @default.
- W2057332317 countsByYear W20573323172012 @default.
- W2057332317 countsByYear W20573323172013 @default.
- W2057332317 countsByYear W20573323172014 @default.
- W2057332317 countsByYear W20573323172015 @default.
- W2057332317 countsByYear W20573323172016 @default.
- W2057332317 countsByYear W20573323172019 @default.
- W2057332317 countsByYear W20573323172020 @default.
- W2057332317 countsByYear W20573323172021 @default.
- W2057332317 countsByYear W20573323172023 @default.
- W2057332317 crossrefType "journal-article" @default.
- W2057332317 hasAuthorship W2057332317A5012085314 @default.
- W2057332317 hasAuthorship W2057332317A5017769921 @default.
- W2057332317 hasAuthorship W2057332317A5027484060 @default.
- W2057332317 hasAuthorship W2057332317A5048168036 @default.
- W2057332317 hasAuthorship W2057332317A5057411147 @default.
- W2057332317 hasAuthorship W2057332317A5070711605 @default.
- W2057332317 hasAuthorship W2057332317A5074290894 @default.
- W2057332317 hasAuthorship W2057332317A5076465961 @default.
- W2057332317 hasBestOaLocation W20573323171 @default.
- W2057332317 hasConcept C105795698 @default.
- W2057332317 hasConcept C111368507 @default.
- W2057332317 hasConcept C115880899 @default.
- W2057332317 hasConcept C119857082 @default.
- W2057332317 hasConcept C127313418 @default.
- W2057332317 hasConcept C132215390 @default.
- W2057332317 hasConcept C142796444 @default.
- W2057332317 hasConcept C18903297 @default.
- W2057332317 hasConcept C197115733 @default.
- W2057332317 hasConcept C197640229 @default.
- W2057332317 hasConcept C2780892065 @default.
- W2057332317 hasConcept C33923547 @default.
- W2057332317 hasConcept C39432304 @default.
- W2057332317 hasConcept C41008148 @default.
- W2057332317 hasConcept C49204034 @default.
- W2057332317 hasConcept C50644808 @default.
- W2057332317 hasConcept C77077793 @default.
- W2057332317 hasConcept C86803240 @default.
- W2057332317 hasConceptScore W2057332317C105795698 @default.
- W2057332317 hasConceptScore W2057332317C111368507 @default.
- W2057332317 hasConceptScore W2057332317C115880899 @default.
- W2057332317 hasConceptScore W2057332317C119857082 @default.