Matches in SemOpenAlex for { <https://semopenalex.org/work/W2057479110> ?p ?o ?g. }
- W2057479110 endingPage "9063" @default.
- W2057479110 startingPage "9034" @default.
- W2057479110 abstract "The past decades have seen an increasing demand for operational monitoring of crop conditions and food production at local to global scales. To properly use satellite Earth observation for such agricultural monitoring, high temporal revisit frequency over vast geographic areas is necessary. However, this often limits the spatial resolution that can be used. The challenge of discriminating pixels that correspond to a particular crop type, a prerequisite for crop specific agricultural monitoring, remains daunting when the signal encoded in pixels stems from several land uses (mixed pixels), e.g., over heterogeneous landscapes where individual fields are often smaller than individual pixels. The question of determining the optimal pixel sizes for an application such as crop identification is therefore naturally inclined towards finding the coarsest acceptable pixel sizes, so as to potentially benefit from what instruments with coarser pixels can offer. To answer this question, this study builds upon and extends a conceptual framework to quantitatively define pixel size requirements for crop identification via image classification. This tool can be modulated using different parameterizations to explore trade-offs between pixel size and pixel purity when addressing the question of crop identification. Results over contrasting landscapes in Central Asia demonstrate that the task of finding the optimum pixel size does not have a “one-size-fits-all” solution. The resulting values for pixel size and purity that are suitable for crop identification proved to be specific to a given landscape, and for each crop they differed across different landscapes. Over the same time series, different crops were not identifiable simultaneously in the season and these requirements further changed over the years, reflecting the different agro-ecological conditions the crops are growing in. Results indicate that sensors like MODIS (250 m) could be suitable for identifying major crop classes in the study sites, whilst sensors like Landsat (30 m) should be considered for object-based classification. The proposed framework is generic and can be applied to any agricultural landscape, thereby potentially serving to guide recommendations for designing dedicated EO missions that can satisfy the requirements in terms of pixel size to identify and discriminate crop types." @default.
- W2057479110 created "2016-06-24" @default.
- W2057479110 creator A5088465455 @default.
- W2057479110 creator A5091004151 @default.
- W2057479110 date "2014-09-23" @default.
- W2057479110 modified "2023-10-16" @default.
- W2057479110 title "Defining the Spatial Resolution Requirements for Crop Identification Using Optical Remote Sensing" @default.
- W2057479110 cites W1973552978 @default.
- W2057479110 cites W1976193075 @default.
- W2057479110 cites W1976784693 @default.
- W2057479110 cites W1984792953 @default.
- W2057479110 cites W1986738039 @default.
- W2057479110 cites W1991361881 @default.
- W2057479110 cites W1992939357 @default.
- W2057479110 cites W1993585210 @default.
- W2057479110 cites W1999110225 @default.
- W2057479110 cites W1999301799 @default.
- W2057479110 cites W2001747857 @default.
- W2057479110 cites W2004611847 @default.
- W2057479110 cites W2005881244 @default.
- W2057479110 cites W2014962178 @default.
- W2057479110 cites W2019601122 @default.
- W2057479110 cites W2019802908 @default.
- W2057479110 cites W2019899368 @default.
- W2057479110 cites W2027620944 @default.
- W2057479110 cites W2029342456 @default.
- W2057479110 cites W2031024973 @default.
- W2057479110 cites W2032046865 @default.
- W2057479110 cites W2033496346 @default.
- W2057479110 cites W2035419249 @default.
- W2057479110 cites W2037518794 @default.
- W2057479110 cites W2047060267 @default.
- W2057479110 cites W2049476189 @default.
- W2057479110 cites W2050136897 @default.
- W2057479110 cites W2055593535 @default.
- W2057479110 cites W2058499576 @default.
- W2057479110 cites W2073821328 @default.
- W2057479110 cites W2076172205 @default.
- W2057479110 cites W2082221482 @default.
- W2057479110 cites W2090792150 @default.
- W2057479110 cites W2102932370 @default.
- W2057479110 cites W2105058098 @default.
- W2057479110 cites W2111499159 @default.
- W2057479110 cites W2111974868 @default.
- W2057479110 cites W2114828048 @default.
- W2057479110 cites W2124791638 @default.
- W2057479110 cites W2126902408 @default.
- W2057479110 cites W2133802438 @default.
- W2057479110 cites W2135151332 @default.
- W2057479110 cites W2138973222 @default.
- W2057479110 cites W2144506763 @default.
- W2057479110 cites W2147615203 @default.
- W2057479110 cites W2159641772 @default.
- W2057479110 cites W2160794506 @default.
- W2057479110 cites W2166260127 @default.
- W2057479110 cites W2167594433 @default.
- W2057479110 cites W2171940937 @default.
- W2057479110 cites W2911964244 @default.
- W2057479110 doi "https://doi.org/10.3390/rs6099034" @default.
- W2057479110 hasPublicationYear "2014" @default.
- W2057479110 type Work @default.
- W2057479110 sameAs 2057479110 @default.
- W2057479110 citedByCount "61" @default.
- W2057479110 countsByYear W20574791102015 @default.
- W2057479110 countsByYear W20574791102016 @default.
- W2057479110 countsByYear W20574791102017 @default.
- W2057479110 countsByYear W20574791102018 @default.
- W2057479110 countsByYear W20574791102019 @default.
- W2057479110 countsByYear W20574791102020 @default.
- W2057479110 countsByYear W20574791102021 @default.
- W2057479110 countsByYear W20574791102022 @default.
- W2057479110 countsByYear W20574791102023 @default.
- W2057479110 crossrefType "journal-article" @default.
- W2057479110 hasAuthorship W2057479110A5088465455 @default.
- W2057479110 hasAuthorship W2057479110A5091004151 @default.
- W2057479110 hasBestOaLocation W20574791101 @default.
- W2057479110 hasConcept C116834253 @default.
- W2057479110 hasConcept C127413603 @default.
- W2057479110 hasConcept C137580998 @default.
- W2057479110 hasConcept C146978453 @default.
- W2057479110 hasConcept C154945302 @default.
- W2057479110 hasConcept C160633673 @default.
- W2057479110 hasConcept C18903297 @default.
- W2057479110 hasConcept C19269812 @default.
- W2057479110 hasConcept C205372480 @default.
- W2057479110 hasConcept C205649164 @default.
- W2057479110 hasConcept C39432304 @default.
- W2057479110 hasConcept C41008148 @default.
- W2057479110 hasConcept C62649853 @default.
- W2057479110 hasConcept C86803240 @default.
- W2057479110 hasConcept C88463610 @default.
- W2057479110 hasConcept C97137747 @default.
- W2057479110 hasConceptScore W2057479110C116834253 @default.
- W2057479110 hasConceptScore W2057479110C127413603 @default.
- W2057479110 hasConceptScore W2057479110C137580998 @default.
- W2057479110 hasConceptScore W2057479110C146978453 @default.
- W2057479110 hasConceptScore W2057479110C154945302 @default.
- W2057479110 hasConceptScore W2057479110C160633673 @default.