Matches in SemOpenAlex for { <https://semopenalex.org/work/W2057503509> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2057503509 endingPage "138" @default.
- W2057503509 startingPage "95" @default.
- W2057503509 abstract "A three-way array X (or three-dimensional matrix) is an array of numbers xijk subscripted by three indices. A triad is a multiplicative array, xijk = aibjck. Analogous to the rank and the row rank of a matrix, we define rank (X) to be the minimum number of triads whose sum is X, and dim1(X) to be the dimensionality of the space of matrices generated by the 1-slabs of X. (Rank and dim1 may not be equal.) We prove several lower bounds on rank. For example, a special case of Theorem 1 is that rank(X)⩾dim1(UX) + rank(XW) − dim1(UXW), where U and W are matrices; this generalizes a matrix theorem of Frobenius. We define the triple product [A, B, C] of three matrices to be the three-way array whose (i, j, k) element is given by ⩞rairbjrckr; in other words, the triple product is the sum of triads formed from the columns of A, B, and C. We prove several sufficient conditions for the factors of a triple product to be essentially unique. For example (see Theorem 4a), suppose [A, B, C] = [Ā, B̄, C̄], and each of the matrices has R columns. Suppose every set of rank (A) columns of A are independent, and similar conditions hold for B and C. Suppose rank (A) + rank (B) + rank (C) ⩾ 2R + 2. Then there exist diagonal matrices Λ, M, N and a permutation matrix P such that Ā = APΛ, B̄ = BPM, C̄ = CPN. Our results have applications to arithmetic complexity theory and to statistical models used in three-way multidimensional scaling." @default.
- W2057503509 created "2016-06-24" @default.
- W2057503509 creator A5019446108 @default.
- W2057503509 date "1977-01-01" @default.
- W2057503509 modified "2023-10-04" @default.
- W2057503509 title "Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics" @default.
- W2057503509 cites W2000215628 @default.
- W2057503509 cites W2015087659 @default.
- W2057503509 cites W2032765816 @default.
- W2057503509 cites W2035476608 @default.
- W2057503509 cites W2070893705 @default.
- W2057503509 cites W2079231426 @default.
- W2057503509 cites W4250775169 @default.
- W2057503509 doi "https://doi.org/10.1016/0024-3795(77)90069-6" @default.
- W2057503509 hasPublicationYear "1977" @default.
- W2057503509 type Work @default.
- W2057503509 sameAs 2057503509 @default.
- W2057503509 citedByCount "1394" @default.
- W2057503509 countsByYear W20575035092012 @default.
- W2057503509 countsByYear W20575035092013 @default.
- W2057503509 countsByYear W20575035092014 @default.
- W2057503509 countsByYear W20575035092015 @default.
- W2057503509 countsByYear W20575035092016 @default.
- W2057503509 countsByYear W20575035092017 @default.
- W2057503509 countsByYear W20575035092018 @default.
- W2057503509 countsByYear W20575035092019 @default.
- W2057503509 countsByYear W20575035092020 @default.
- W2057503509 countsByYear W20575035092021 @default.
- W2057503509 countsByYear W20575035092022 @default.
- W2057503509 countsByYear W20575035092023 @default.
- W2057503509 crossrefType "journal-article" @default.
- W2057503509 hasAuthorship W2057503509A5019446108 @default.
- W2057503509 hasBestOaLocation W20575035091 @default.
- W2057503509 hasConcept C106487976 @default.
- W2057503509 hasConcept C113313756 @default.
- W2057503509 hasConcept C114614502 @default.
- W2057503509 hasConcept C115973184 @default.
- W2057503509 hasConcept C118615104 @default.
- W2057503509 hasConcept C130367717 @default.
- W2057503509 hasConcept C134306372 @default.
- W2057503509 hasConcept C159985019 @default.
- W2057503509 hasConcept C164226766 @default.
- W2057503509 hasConcept C192562407 @default.
- W2057503509 hasConcept C2524010 @default.
- W2057503509 hasConcept C33923547 @default.
- W2057503509 hasConcept C42747912 @default.
- W2057503509 hasConcept C84140500 @default.
- W2057503509 hasConcept C90673727 @default.
- W2057503509 hasConceptScore W2057503509C106487976 @default.
- W2057503509 hasConceptScore W2057503509C113313756 @default.
- W2057503509 hasConceptScore W2057503509C114614502 @default.
- W2057503509 hasConceptScore W2057503509C115973184 @default.
- W2057503509 hasConceptScore W2057503509C118615104 @default.
- W2057503509 hasConceptScore W2057503509C130367717 @default.
- W2057503509 hasConceptScore W2057503509C134306372 @default.
- W2057503509 hasConceptScore W2057503509C159985019 @default.
- W2057503509 hasConceptScore W2057503509C164226766 @default.
- W2057503509 hasConceptScore W2057503509C192562407 @default.
- W2057503509 hasConceptScore W2057503509C2524010 @default.
- W2057503509 hasConceptScore W2057503509C33923547 @default.
- W2057503509 hasConceptScore W2057503509C42747912 @default.
- W2057503509 hasConceptScore W2057503509C84140500 @default.
- W2057503509 hasConceptScore W2057503509C90673727 @default.
- W2057503509 hasIssue "2" @default.
- W2057503509 hasLocation W20575035091 @default.
- W2057503509 hasOpenAccess W2057503509 @default.
- W2057503509 hasPrimaryLocation W20575035091 @default.
- W2057503509 hasRelatedWork W1558111420 @default.
- W2057503509 hasRelatedWork W1989071228 @default.
- W2057503509 hasRelatedWork W204878222 @default.
- W2057503509 hasRelatedWork W2085477326 @default.
- W2057503509 hasRelatedWork W2154781247 @default.
- W2057503509 hasRelatedWork W2516428376 @default.
- W2057503509 hasRelatedWork W2690537872 @default.
- W2057503509 hasRelatedWork W3209221487 @default.
- W2057503509 hasRelatedWork W4298276972 @default.
- W2057503509 hasRelatedWork W4323640762 @default.
- W2057503509 hasVolume "18" @default.
- W2057503509 isParatext "false" @default.
- W2057503509 isRetracted "false" @default.
- W2057503509 magId "2057503509" @default.
- W2057503509 workType "article" @default.