Matches in SemOpenAlex for { <https://semopenalex.org/work/W2057608478> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2057608478 endingPage "31" @default.
- W2057608478 startingPage "18" @default.
- W2057608478 abstract "Attribute reduction is one of the important research issues in rough set theory. Most existing attribute reduction algorithms are now faced with two challenging problems. On one hand, they have seldom taken granular computing into consideration. On the other hand, they still cannot deal with big data. To address these issues, the hierarchical encoded decision table is first defined. The relationships of hierarchical decision tables are then discussed under different levels of granularity. The parallel computations of the equivalence classes and the attribute significance are further designed for attribute reduction. Finally, hierarchical attribute reduction algorithms are proposed in data and task parallel using MapReduce. Experimental results demonstrate that the proposed algorithms can scale well and efficiently process big data." @default.
- W2057608478 created "2016-06-24" @default.
- W2057608478 creator A5022293618 @default.
- W2057608478 creator A5032947460 @default.
- W2057608478 creator A5049899750 @default.
- W2057608478 creator A5073682120 @default.
- W2057608478 creator A5075095237 @default.
- W2057608478 date "2015-01-01" @default.
- W2057608478 modified "2023-10-09" @default.
- W2057608478 title "Hierarchical attribute reduction algorithms for big data using MapReduce" @default.
- W2057608478 cites W1547566968 @default.
- W2057608478 cites W1963843406 @default.
- W2057608478 cites W1965543855 @default.
- W2057608478 cites W1968681563 @default.
- W2057608478 cites W1970217364 @default.
- W2057608478 cites W1975955667 @default.
- W2057608478 cites W1976555061 @default.
- W2057608478 cites W1992915331 @default.
- W2057608478 cites W1994082075 @default.
- W2057608478 cites W1994743372 @default.
- W2057608478 cites W2025027782 @default.
- W2057608478 cites W2039438466 @default.
- W2057608478 cites W2043436605 @default.
- W2057608478 cites W2074005500 @default.
- W2057608478 cites W2074175312 @default.
- W2057608478 cites W2074282863 @default.
- W2057608478 cites W2075340829 @default.
- W2057608478 cites W2078376232 @default.
- W2057608478 cites W2079680557 @default.
- W2057608478 cites W2090096052 @default.
- W2057608478 cites W2110183025 @default.
- W2057608478 cites W2119565742 @default.
- W2057608478 cites W2129150932 @default.
- W2057608478 cites W2134197825 @default.
- W2057608478 cites W2154500141 @default.
- W2057608478 cites W2159394607 @default.
- W2057608478 cites W2173213060 @default.
- W2057608478 cites W2332026188 @default.
- W2057608478 cites W4255833381 @default.
- W2057608478 doi "https://doi.org/10.1016/j.knosys.2014.09.001" @default.
- W2057608478 hasPublicationYear "2015" @default.
- W2057608478 type Work @default.
- W2057608478 sameAs 2057608478 @default.
- W2057608478 citedByCount "92" @default.
- W2057608478 countsByYear W20576084782015 @default.
- W2057608478 countsByYear W20576084782016 @default.
- W2057608478 countsByYear W20576084782017 @default.
- W2057608478 countsByYear W20576084782018 @default.
- W2057608478 countsByYear W20576084782019 @default.
- W2057608478 countsByYear W20576084782020 @default.
- W2057608478 countsByYear W20576084782021 @default.
- W2057608478 countsByYear W20576084782022 @default.
- W2057608478 countsByYear W20576084782023 @default.
- W2057608478 crossrefType "journal-article" @default.
- W2057608478 hasAuthorship W2057608478A5022293618 @default.
- W2057608478 hasAuthorship W2057608478A5032947460 @default.
- W2057608478 hasAuthorship W2057608478A5049899750 @default.
- W2057608478 hasAuthorship W2057608478A5073682120 @default.
- W2057608478 hasAuthorship W2057608478A5075095237 @default.
- W2057608478 hasConcept C111335779 @default.
- W2057608478 hasConcept C11413529 @default.
- W2057608478 hasConcept C120314980 @default.
- W2057608478 hasConcept C124101348 @default.
- W2057608478 hasConcept C153914771 @default.
- W2057608478 hasConcept C2524010 @default.
- W2057608478 hasConcept C33923547 @default.
- W2057608478 hasConcept C41008148 @default.
- W2057608478 hasConcept C75684735 @default.
- W2057608478 hasConceptScore W2057608478C111335779 @default.
- W2057608478 hasConceptScore W2057608478C11413529 @default.
- W2057608478 hasConceptScore W2057608478C120314980 @default.
- W2057608478 hasConceptScore W2057608478C124101348 @default.
- W2057608478 hasConceptScore W2057608478C153914771 @default.
- W2057608478 hasConceptScore W2057608478C2524010 @default.
- W2057608478 hasConceptScore W2057608478C33923547 @default.
- W2057608478 hasConceptScore W2057608478C41008148 @default.
- W2057608478 hasConceptScore W2057608478C75684735 @default.
- W2057608478 hasFunder F4320321001 @default.
- W2057608478 hasFunder F4320322769 @default.
- W2057608478 hasLocation W20576084781 @default.
- W2057608478 hasOpenAccess W2057608478 @default.
- W2057608478 hasPrimaryLocation W20576084781 @default.
- W2057608478 hasRelatedWork W1968092302 @default.
- W2057608478 hasRelatedWork W2355136216 @default.
- W2057608478 hasRelatedWork W2361986219 @default.
- W2057608478 hasRelatedWork W2376367779 @default.
- W2057608478 hasRelatedWork W2379876897 @default.
- W2057608478 hasRelatedWork W2390124062 @default.
- W2057608478 hasRelatedWork W2557500211 @default.
- W2057608478 hasRelatedWork W2986852879 @default.
- W2057608478 hasRelatedWork W3012264682 @default.
- W2057608478 hasRelatedWork W2183660210 @default.
- W2057608478 hasVolume "73" @default.
- W2057608478 isParatext "false" @default.
- W2057608478 isRetracted "false" @default.
- W2057608478 magId "2057608478" @default.
- W2057608478 workType "article" @default.